6,814 research outputs found

    Particle number fluctuations in nuclear collisions within excluded volume hadron gas model

    Get PDF
    The multiplicity fluctuations are studied in the van der Waals excluded volume hadron-resonance gas model. The calculations are done in the grand canonical ensemble within the Boltzmann statistics approximation. The scaled variances for positive, negative and all charged hadrons are calculated along the chemical freeze-out line of nucleus-nucleus collisions at different collision energies. The multiplicity fluctuations are found to be suppressed in the van der Waals gas. The numerical calculations are presented for two values of hard-core hadron radius, r=0.3r=0.3 fm and 0.5 fm, as well as for the upper limit of the excluded volume suppression effects.Comment: 19 pages, 4 figure

    Black Hole Feedback On The First Galaxies

    Get PDF
    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.Astronom

    Ramond-Ramond Cohomology and O(D,D) T-duality

    Full text link
    In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a manifestly covariant manner --with regard to O(D,D) T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz symmetries-- we incorporate R-R potentials into double field theory. We take them as a single object which is in a bi-fundamental spinorial representation of the double Lorentz groups. We identify cohomological structure relevant to the field strength. A priori, the R-R sector as well as all the fermions are O(D,D) singlet. Yet, gauge fixing the two vielbeins equal to each other modifies the O(D,D) transformation rule to call for a compensating local Lorentz rotation, such that the R-R potential may turn into an O(D,D) spinor and T-duality can flip the chirality exchanging type IIA and IIB supergravities.Comment: 1+37 pages, no figure; Structure reorganized, References added, To appear in JHEP. cf. Gong Show of Strings 2012 (http://wwwth.mpp.mpg.de/members/strings/strings2012/strings_files/program/Talks/Thursday/Gongshow/Lee.pdf

    Particle Number Fluctuations in the Microcanonical Ensemble

    Full text link
    Particle number fluctuations are studied in the microcanonical ensemble. For the Boltzmann statistics we deduce exact analytical formulae for the microcanonical partition functions in the case of non-interacting massless neutral particles and charged particles with zero net charge. The particle number fluctuations are calculated and we find that in the microcanonical ensemble they are suppressed in comparison to the fluctuations in the canonical and grand canonical ensembles. This remains valid in the thermodynamic limit too, so that the well-known equivalence of all statistical ensembles refers to average quantities, but does not apply to fluctuations. In the thermodynamic limit we are able to calculate the particle number fluctuations in the system of massive bosons and fermions when the exact conservation laws of both the energy and charge are taken into account.Comment: REVTeX, 17 pages, 9 figures, v3: misprints a correcte

    A Double Sigma Model for Double Field Theory

    Full text link
    We define a sigma model with doubled target space and calculate its background field equations. These coincide with generalised metric equation of motion of double field theory, thus the double field theory is the effective field theory for the sigma model.Comment: 26 pages, v1: 37 pages, v2: references added, v3: updated to match published version - background and detail of calculations substantially condensed, motivation expanded, refs added, results unchange

    The local symmetries of M-theory and their formulation in generalised geometry

    Full text link
    In the doubled field theory approach to string theory, the T-duality group is promoted to a manifest symmetry at the expense of replacing ordinary Riemannian geometry with generalised geometry on a doubled space. The local symmetries are then given by a generalised Lie derivative and its associated algebra. This paper constructs an analogous structure for M-theory. A crucial by-product of this is the derivation of the physical section condition for M-theory formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte

    Quantum and frustration effects on fluctuations of the inverse compressibility in two-dimensional Coulomb glasses

    Full text link
    We consider interacting electrons in a two-dimensional quantum Coulomb glass and investigate by means of the Hartree-Fock approximation the combined effects of the electron-electron interaction and the transverse magnetic field on fluctuations of the inverse compressibility. Preceding systematic study of the system in the absence of the magnetic field identifies the source of the fluctuations, interplay of disorder and interaction, and effects of hopping. Revealed in sufficiently clean samples with strong interactions is an unusual right-biased distribution of the inverse compressibility, which is neither of the Gaussian nor of the Wigner-Dyson type. While in most cases weak magnetic fields tend to suppress fluctuations, in relatively clean samples with weak interactions fluctuations are found to grow with the magnetic field. This is attributed to the localization properties of the electron states, which may be measured by the participation ratio and the inverse participation number. It is also observed that at the frustration where the Fermi level is degenerate, localization or modulation of electrons is enhanced, raising fluctuations. Strong frustration in general suppresses effects of the interaction on the inverse compressibility and on the configuration of electrons.Comment: 15 pages, 18 figures, To appear in Phys. Rev.

    Multiplicity Fluctuations in Hadron-Resonance Gas

    Get PDF
    The charged hadron multiplicity fluctuations are considered in the canonical ensemble. The microscopic correlator method is extended to include three conserved charges: baryon number, electric charge and strangeness. The analytical formulae are presented that allow to include resonance decay contributions to correlations and fluctuations. We make the predictions for the scaled variances of negative, positive and all charged hadrons in the most central Pb+Pb (Au+Au) collisions for different collision energies from SIS and AGS to SPS and RHIC.Comment: 19 pages, 4 figure

    Multiplicity Fluctuations in the Pion-Fireball Gas

    Full text link
    The pion number fluctuations are considered in the system of pions and large mass fireballs decaying finally into pions. A formulation which gives an extension of the model of independent sources is suggested. The grand canonical and micro-canonical ensemble formulations of the pion-fireball gas are considered as particular examples.Comment: 13 pages, 4 figure

    Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions

    Full text link
    We consider the reduction of the duality invariant approach to M-theory by a U-duality group valued Scherk-Schwarz twist. The result is to produce potentials for gauged supergravities that are normally associated with non-geometric compactifications. The local symmetry reduces to gauge transformations with the gaugings exactly matching those of the embedding tensor approach to gauged supergravity. Importantly, this approach now includes a nontrivial dependence of the fields on the extra coordinates of the extended space.Comment: 22 pages Latex; v2: typos corrected and references adde
    corecore