44 research outputs found

    Degrees of Freedom and Achievable Rate of Wide-Band Multi-cell Multiple Access Channels With No CSIT

    Full text link
    This paper considers a KK-cell multiple access channel with inter-symbol interference. The primary finding of this paper is that, without instantaneous channel state information at the transmitters (CSIT), the sum degrees-of-freedom (DoF) of the considered channel is β1βK\frac{\beta -1}{\beta}K with β2\beta \geq 2 when the number of users per cell is sufficiently large, where β\beta is the ratio of the maximum channel-impulse-response (CIR) length of desired links to that of interfering links in each cell. Our finding implies that even without instantaneous CSIT, \textit{interference-free DoF per cell} is achievable as β\beta approaches infinity with a sufficiently large number of users per cell. This achievability is shown by a blind interference management method that exploits the relativity in delay spreads between desired and interfering links. In this method, all inter-cell-interference signals are aligned to the same direction by using a discrete-Fourier-transform-based precoding with cyclic prefix that only depends on the number of CIR taps. Using this method, we also characterize the achievable sum rate of the considered channel, in a closed-form expression.Comment: Submitted to IEEE Transactions on Communication

    MIMO Detection under Hardware Impairments: Learning with Noisy Labels

    Full text link
    This paper considers a data detection problem in multiple-input multiple-output (MIMO) communication systems with hardware impairments. To address challenges posed by nonlinear and unknown distortion in received signals, two learning-based detection methods, referred to as model-driven and data-driven, are presented. The model-driven method employs a generalized Gaussian distortion model to approximate the conditional distribution of the distorted received signal. By using the outputs of coarse data detection as noisy training data, the model-driven method avoids the need for additional training overhead beyond traditional pilot overhead for channel estimation. An expectation-maximization algorithm is devised to accurately learn the parameters of the distortion model from noisy training data. To resolve a model mismatch problem in the model-driven method, the data-driven method employs a deep neural network (DNN) for approximating a-posteriori probabilities for each received signal. This method uses the outputs of the model-driven method as noisy labels and therefore does not require extra training overhead. To avoid the overfitting problem caused by noisy labels, a robust DNN training algorithm is devised, which involves a warm-up period, sample selection, and loss correction. Simulation results demonstrate that the two proposed methods outperform existing solutions with the same overhead under various hardware impairment scenarios

    Joint Source-Channel Coding for Channel-Adaptive Digital Semantic Communications

    Full text link
    In this paper, we propose a novel joint source-channel coding (JSCC) approach for channel-adaptive digital semantic communications. In semantic communication systems with digital modulation and demodulation, end-to-end training and robust design of JSCC encoder and decoder becomes challenging due to the nonlinearity of modulation and demodulation processes, as well as diverse channel conditions and modulation orders. To address this challenge, we first develop a new demodulation method which assesses the uncertainty of the demodulation output to improve the robustness of the digital semantic communication system. We then devise a robust training strategy that facilitates end-to-end training of the JSCC encoder and decoder, while enhancing their robustness and flexibility. To this end, we model the relationship between the encoder's output and decoder's input using binary symmetric erasure channels and then sample the parameters of these channels from diverse distributions. We also develop a channel-adaptive modulation technique for an inference phase, in order to reduce the communication latency while maintaining task performance. In this technique, we adaptively determine modulation orders for the latent variables based on channel conditions. Using simulations, we demonstrate the superior performance of the proposed JSCC approach for both image classification and reconstruction tasks compared to existing JSCC approaches

    FedVQCS: Federated Learning via Vector Quantized Compressed Sensing

    Full text link
    In this paper, a new communication-efficient federated learning (FL) framework is proposed, inspired by vector quantized compressed sensing. The basic strategy of the proposed framework is to compress the local model update at each device by applying dimensionality reduction followed by vector quantization. Subsequently, the global model update is reconstructed at a parameter server (PS) by applying a sparse signal recovery algorithm to the aggregation of the compressed local model updates. By harnessing the benefits of both dimensionality reduction and vector quantization, the proposed framework effectively reduces the communication overhead of local update transmissions. Both the design of the vector quantizer and the key parameters for the compression are optimized so as to minimize the reconstruction error of the global model update under the constraint of wireless link capacity. By considering the reconstruction error, the convergence rate of the proposed framework is also analyzed for a smooth loss function. Simulation results on the MNIST and CIFAR-10 datasets demonstrate that the proposed framework provides more than a 2.5% increase in classification accuracy compared to state-of-art FL frameworks when the communication overhead of the local model update transmission is less than 0.1 bit per local model entry

    Communication-Efficient Federated Learning over Capacity-Limited Wireless Networks

    Full text link
    In this paper, a communication-efficient federated learning (FL) framework is proposed for improving the convergence rate of FL under a limited uplink capacity. The central idea of the proposed framework is to transmit the values and positions of the top-SS entries of a local model update for uplink transmission. A lossless encoding technique is considered for transmitting the positions of these entries, while a linear transformation followed by the Lloyd-Max scalar quantization is considered for transmitting their values. For an accurate reconstruction of the top-SS values, a linear minimum mean squared error method is developed based on the Bussgang decomposition. Moreover, an error feedback strategy is introduced to compensate for both compression and reconstruction errors. The convergence rate of the proposed framework is analyzed for a non-convex loss function with consideration of the compression and reconstruction errors. From the analytical result, the key parameters of the proposed framework are optimized for maximizing the convergence rate for the given capacity. Simulation results on the MNIST and CIFAR-10 datasets demonstrate that the proposed framework outperforms state-of-the-art FL frameworks in terms of classification accuracy under the limited uplink capacity

    Communication-Efficient Split Learning via Adaptive Feature-Wise Compression

    Full text link
    This paper proposes a novel communication-efficient split learning (SL) framework, named SplitFC, which reduces the communication overhead required for transmitting intermediate feature and gradient vectors during the SL training process. The key idea of SplitFC is to leverage different dispersion degrees exhibited in the columns of the matrices. SplitFC incorporates two compression strategies: (i) adaptive feature-wise dropout and (ii) adaptive feature-wise quantization. In the first strategy, the intermediate feature vectors are dropped with adaptive dropout probabilities determined based on the standard deviation of these vectors. Then, by the chain rule, the intermediate gradient vectors associated with the dropped feature vectors are also dropped. In the second strategy, the non-dropped intermediate feature and gradient vectors are quantized using adaptive quantization levels determined based on the ranges of the vectors. To minimize the quantization error, the optimal quantization levels of this strategy are derived in a closed-form expression. Simulation results on the MNIST, CIFAR-10, and CelebA datasets demonstrate that SplitFC provides more than a 5.6% increase in classification accuracy compared to state-of-the-art SL frameworks, while they require 320 times less communication overhead compared to the vanilla SL framework without compression

    Semi-Data-Aided Channel Estimation for MIMO Systems via Reinforcement Learning

    Full text link
    Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an initial channel estimate. In this paper, we propose a semi-data-aided channel estimator for multiple-input multiple-output communication systems. Our strategy is to leverage reinforcement learning (RL) for selecting reliable detected symbols among the symbols in the first part of transmitted data block. This strategy facilitates an update of the channel estimate before the end of data block transmission and therefore achieves a significant reduction in communication latency compared to conventional data-aided channel estimation approaches. Towards this end, we first define a Markov decision process (MDP) which sequentially decides whether to use each detected symbol as an additional pilot signal. We then develop an RL algorithm to efficiently find the best policy of the MDP based on a Monte Carlo tree search approach. In this algorithm, we exploit the a-posteriori probability for approximating both the optimal future actions and the corresponding state transitions of the MDP and derive a closed-form expression for the best policy. Simulation results demonstrate that the proposed channel estimator effectively mitigates both channel estimation error and detection performance loss caused by insufficient pilot signals
    corecore