11 research outputs found

    Elevated IFNA1 and suppressed IL12p40 associated with persistent hyperinflammation in COVID-19 pneumonia

    Get PDF
    IntroductionDespite of massive endeavors to characterize inflammation in COVID-19 patients, the core network of inflammatory mediators responsible for severe pneumonia stillremain remains elusive. MethodsHere, we performed quantitative and kinetic analysis of 191 inflammatory factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347 confirmed COVID-19 pneumonia patients (sample n = 875), including 8 deceased patients. ResultsDifferential expression analysis showed that 76% of plasmaproteins (145 factors) were upregulated in severe COVID-19 patients comparedwith moderate patients, confirming overt inflammatory responses in severe COVID-19 pneumonia patients. Global correlation analysis of the plasma factorsrevealed two core inflammatory modules, core I and II, comprising mainly myeloid cell and lymphoid cell compartments, respectively, with enhanced impact in a severity-dependent manner. We observed elevated IFNA1 and suppressed IL12p40, presenting a robust inverse correlation in severe patients, which was strongly associated with persistent hyperinflammation in 8.3% of moderate pneumonia patients and 59.4% of severe patients. DiscussionAberrant persistence of pulmonary and systemic inflammation might be associated with long COVID-19 sequelae. Our comprehensive analysis of inflammatory mediators in plasmarevealed the complexity of pneumonic inflammation in COVID-19 patients anddefined critical modules responsible for severe pneumonic progression

    A Brief Review of Formaldehyde Removal through Activated Carbon Adsorption

    No full text
    Formaldehyde is a highly toxic indoor pollutant that can adversely impact human health. Various technologies have been intensively evaluated to remove formaldehyde from an indoor atmospheres. Activated carbon (AC) has been used to adsorb formaldehyde from the indoor atmosphere, which has been commercially viable owing to its low operational costs. AC has a high adsorption affinity due to its high surface area. In addition, applications of AC may be diversified by the surface modification. Among the different surface modifications for AC, amination treatments of AC have been reported and evaluated. Specifically, the amine functional groups of the amine-treated AC have been found to play an important role in the adsorption of formaldehyde. Surface modifications of AC by impregnating and/or grafting the amine functional groups onto the AC surface have been reported in the literature. The impregnation of the amine-containing species on AC is mainly achieved by physical interaction or H-bond of the amines to the AC surface. Meanwhile, the grafting of the amine functional groups is mainly conducted through chemical reactions occurring between the amines and the AC surface. Herein, the carboxyl group, as a representative functional group for grafting on the surface of AC, plays a key role in the amination reactions. A qualitative comparison of amination chemicals for the surface modification of AC has also been discussed. Thermodynamics and kinetics for adsorption of formaldehyde on AC are firstly reviewed in this paper, and then the major factors affecting the adsorptive removal of formaldehyde over AC are highlighted and discussed in terms of humidity and temperature. In addition, new strategies for amination, as well as the physical modification option for AC application, are proposed and discussed in terms of safety and processability

    Production of Mesenchymal Stem Cells through Stem Cell Reprogramming

    No full text
    Mesenchymal stem cells (MSCs) possess a broad spectrum of therapeutic applications and have been used in clinical trials. MSCs are mainly retrieved from adult or fetal tissues. However, there are many obstacles with the use of tissue-derived MSCs, such as shortages of tissue sources, difficult and invasive retrieval methods, cell population heterogeneity, low purity, cell senescence, and loss of pluripotency and proliferative capacities over continuous passages. Therefore, other methods to obtain high-quality MSCs need to be developed to overcome the limitations of tissue-derived MSCs. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are considered potent sources for the derivation of MSCs. PSC-derived MSCs (PSC-MSCs) may surpass tissue-derived MSCs in proliferation capacity, immunomodulatory activity, and in vivo therapeutic applications. In this review, we will discuss basic as well as recent protocols for the production of PSC-MSCs and their in vitro and in vivo therapeutic efficacies. A better understanding of the current advances in the production of PSC-MSCs will inspire scientists to devise more efficient differentiation methods that will be a breakthrough in the clinical application of PSC-MSCs

    The Orientia tsutsugamushi ScaB Autotransporter Protein Is Required for Adhesion and Invasion of Mammalian Cells

    No full text
    Autotransporter proteins are widely present in Gram-negative bacteria. They play a pivotal role in processes related to bacterial pathogenesis, including adhesion, invasion, colonization, biofilm formation, and cellular toxicity. Bioinformatics analysis revealed that Orientia tsutsugamushi, the causative agent of scrub typhus, encodes six different autotransporter genes (scaA-scaF). Although four of these genes (scaA, scaC, scaD, and scaE) are present in diverse strains, scaB and scaF have been detected in only a limited number of strains. Previous studies have demonstrated that ScaA and ScaC are involved in the adherence of host cells. However, the putative function of other O. tsutsugamushi Sca proteins has not been studied yet. In this study, we show that scaB is transcribed and expressed on the surface of O. tsutsugamushi Boryong strain. Using a heterologous Escherichia coli expression system, we demonstrated that ScaB-expressing E. coli can successfully mediate adherence to and invasion into non-phagocytic cells, including epithelial and endothelial cells. In addition, pretreatment with a recombinant ScaB polypeptide inhibits the entry of O. tsutsugamushi into cultured mammalian cells. Finally, we also identified the scaB gene in the Kuroki and TA686 strains and observed high levels of sequence variation in the passenger domains. Here, we propose that the ScaB protein of O. tsutsugamushi can mediate both adhesion to and invasion into host cells in the absence of other O. tsutsugamushi genes and may play important roles in bacterial pathogenesis.Y

    Molecular and Serological Investigation of Severe Fever with Thrombocytopenia Syndrome Virus in Cats

    No full text
    Background:Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne zoonosis in China, the Republic of Korea (ROK), and Japan. The presence of the SFTS virus (SFTSV) in companion, livestock, and wild animals has been reported. Recently, human SFTS-like clinical symptoms in cats and cheetahs have been reported in Japan. Therefore, the prevalence of the SFTSV gene or antibody in cats is important for public health as well as veterinary medicine. Materials and Methods:Sera were collected from 201 feral and house cats in the ROK in 2017. Samples were analyzed for the presence of the SFTSV gene after RT-nested PCR amplification and for anti-SFTSV antibodies after enzyme linked immunosorbent assay. Results:Eight (4.0%) and nine (4.5%) of 201 cat sera were found to be positive for the SFTSV gene and anti-SFTSV nucleocapsid protein antibodies, respectively. Specifically, 5.9% feral and 2.0% house cats were positive for the SFTSV gene, and 6.9% feral and 2.0% house cats were positive for anti-SFTSV antibodies. All sequences of the SFTSV S segment obtained were included in Japanese/Korean SFTSV clades, as opposed to the Chinese clade. Conclusions:This study constitutes the first serological study of SFTSV in house and feral cats in the ROK. Evidence of SFTSV in companion animals indicates that SFTSV can circulate in homes and that more intensive precautions and education measures are needed for companion animal guardians and veterinarians.N

    Vaccination with single plasmid DNA encoding IL-12 and antigens of severe fever with thrombocytopenia syndrome virus elicits complete protection in IFNAR knockout mice.

    No full text
    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by SFTS virus (SFTSV) infection. Despite a gradual increase of SFTS cases and high mortality in endemic regions, no specific viral therapy nor vaccine is available. Here, we developed a single recombinant plasmid DNA encoding SFTSV genes, Gn and Gc together with NP-NS fusion antigen, as a vaccine candidate. The viral antigens were fused with Fms-like tyrosine kinase-3 ligand (Flt3L) and IL-12 gene was incorporated into the plasmid to enhance cell-mediated immunity. Vaccination with the DNA provides complete protection of IFNAR KO mice upon lethal SFTSV challenge, whereas immunization with a plasmid without IL-12 gene resulted in partial protection. Since we failed to detect antibodies against surface glycoproteins, Gn and Gc, in the immunized mice, antigen-specific cellular immunity, as confirmed by enhanced antigen-specific T cell responses, might play major role in protection. Finally, we evaluated the degree of protective immunity provided by protein immunization of the individual glycoprotein, Gn or Gc. Although both protein antigens induced a significant level of neutralizing activity against SFTSV, Gn vaccination resulted in relatively higher neutralizing activity and better protection than Gc vaccination. However, both antigens failed to provide complete protection. Given that DNA vaccines have failed to induce sufficient immunogenicity in human trials when compared to protein vaccines, optimal combinations of DNA and protein elements, proper selection of target antigens, and incorporation of efficient adjuvant, need to be further investigated for SFTSV vaccine development

    mRNA vaccine encoding Gn provides protection against severe fever with thrombocytopenia syndrome virus in mice

    No full text
    Abstract We developed a promising mRNA vaccine against severe fever with thrombocytopenia syndrome (SFTS), an infectious disease caused by the SFTS virus that is primarily transmitted through tick bites. Administration of lipid nanoparticle-encapsulated mRNA-Gn successfully induced neutralizing antibodies and T-cell responses in mice. The vaccinated mice were protected against a lethal SFTS virus challenge, suggesting that this mRNA vaccine may be an effective and successful SFTS vaccine candidate

    Severe fever with thrombocytopenia syndrome virus infection or mixed infection with scrub typhus in South Korea in 2000-2003

    No full text
    Severe fever with thrombocytopenia syndrome is a tick-borne viral disease, with a high mortality rate that was first reported in China in 2009. Scrub typhus is an acute febrile illness caused by Orientia tsutsugamushi, a bacterium transmitted to humans through chigger mite bites. Severe fever with thrombocytopenia syndrome and scrub typhus are endemic to South Korea. To investigate evidence of severe fever with thrombocytopenia syndrome virus (SFTSV) infection or mixed infection with scrub typhus in South Korea, we examined 2,329 sera samples collected from patients presenting from November 1, 2000, to November 1, 2003, for the diagnosis of rickettisal diseases at Seoul National University, Seoul, South Korea. We found retrospective evidence of SFTSV infection or mixed infection with scrub typhus in South Korea in 2000-2003. Severe fever with thrombocytopenia syndrome virus infections in South Korea occurred before previously reported cases and were more concurrent with those in China. It is important to consider SFTSV infection in patients with scrub typhus.OAIID:RECH_ACHV_DSTSH_NO:T201915555RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A079480CITE_RATE:2.315FILENAME:2019 AJMH 2019_SEP.pdfDEPT_NM:의과학과EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/d6a4419a-8754-4177-a4c1-4e0670473a2d/linkY
    corecore