64,330 research outputs found

    The Continuum Structure of the Borromean Halo Nucleus 11Li

    Get PDF
    We solve the Faddeev equations for 11Li (n+n+9Li) using hyperspherical coordinates and analytical expressions for distances much larger than the effective ranges of the interactions. The lowest resonances are found at 0.65 MeV (1/2+, 3/2+, 5/2+) and 0.89 MeV (3/2+, 3/2-) with widths of about 0.35 MeV. A number of higher-lying broader resonances are also obtained and related to the Efimov effect. The dipole strength function and the Coulomb dissociation cross section are also calculated. PACS numbers: 21.45.+v, 11.80.Jy, 21.60.GxComment: 10 pages, LaTeX, 3 postscript figures, psfig.st

    Square-well solution to the three-body problem

    Get PDF
    The angular part of the Faddeev equations is solved analytically for s-states for two-body square-well potentials. The results are, still analytically, generalized to arbitrary short-range potentials for both small and large distances. We consider systems with three identical bosons, three non-identical particles and two identical spin-1/2 fermions plus a third particle with arbitrary spin. The angular wave functions are in general linear combinations of trigonometric and exponential functions. The Efimov conditions are obtained at large distances. General properties and applications to arbitrary potentials are discussed. Gaussian potentials are used for illustrations. The results are useful for numerical calculations, where for example large distances can be treated analytically and matched to the numerical solutions at smaller distances. The saving is substantial.Comment: 34 pages, LaTeX file, 9 postscript figures included using epsf.st
    corecore