5,978 research outputs found

    Wind

    Get PDF

    Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array

    Get PDF
    The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W/Si multilayers to provide a broad band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure developed for gazing incidence optics, which averages the effective area over the energy range, and combines an energy weighting function with an angular weighting function to control the shape of the desired effective area. The NuSTAR multilayers are depth graded with a power-law, d_i = a/(b + i)^c, and we optimize over the total number of bi-layers, N, c, and the maximum bi-layer thickness, d_(max). The result is a 10 mirror group design optimized for a flat even energy response both on and off-axis

    Difference system for Selberg correlation integrals

    Full text link
    The Selberg correlation integrals are averages of the products s=1ml=1n(xszl)μs\prod_{s=1}^m\prod_{l=1}^n (x_s - z_l)^{\mu_s} with respect to the Selberg density. Our interest is in the case m=1m=1, μ1=μ\mu_1 = \mu, when this corresponds to the μ\mu-th moment of the corresponding characteristic polynomial. We give the explicit form of a (n+1)×(n+1)(n+1) \times (n+1) matrix linear difference system in the variable μ\mu which determines the average, and we give the Gauss decomposition of the corresponding (n+1)×(n+1)(n+1) \times (n+1) matrix. For μ\mu a positive integer the difference system can be used to efficiently compute the power series defined by this average.Comment: 21 page

    A Near-Term Quantum Algorithm for Computing Molecular and Materials Properties based on Recursive Variational Series Methods

    Full text link
    Determining properties of molecules and materials is one of the premier applications of quantum computing. A major question in the field is: how might we use imperfect near-term quantum computers to solve problems of practical value? We propose a quantum algorithm to estimate properties of molecules using near-term quantum devices. The method is a recursive variational series estimation method, where we expand an operator of interest in terms of Chebyshev polynomials, and evaluate each term in the expansion using a variational quantum algorithm. We test our method by computing the one-particle Green's function in energy domain and the autocorrelation function in time domain.Comment: 16+10 pages, 3 figures; comments welcom

    Correcting for the Ewald Sphere in High-Resolution Single-Particle Reconstructions

    Get PDF
    To avoid the challenges of crystallization and the size limitations of NMR, it has long been hoped that single-particle cryo-electron microscopy (cryo-EM) would eventually yield atomically interpretable reconstructions. For the most favorable class of specimens (large icosahedral viruses), one of the key obstacles is curvature of the Ewald sphere, which leads to a breakdown of the Projection Theorem used by conventional three-dimensional (3D) reconstruction programs. Here, we review the basic problem and our implementation of the “paraboloid” reconstruction method, which overcomes the limitation by averaging information from images recorded from different points of view

    Local inhibition of indoleamine 2, 3-dioxygenase mitigates renal fibrosis

    Get PDF
    Chronic kidney disease (CKD) is a major global health concern and renal fibrosis is an integral part of the pathophysiological mechanism underlying disease progression. In CKD patients, the majority of metabolic pathways are in disarray and perturbations in enzyme activity most likely contribute to the wide variety of comorbidities observed in these patients. To illustrate, catabolism of tryptophan by indoleamine 2,3-dioxygenase (IDO) gives rise to numerous biologically active metabolites implicated in CKD progression. Here, we evaluated the effect of antagonizing IDO on renal fibrogenesis. To this end, we antagonized IDO using 1-methyl-D-tryptophan (1-MT) and BMS-98620 in TGF-β-treated murine precision-cut kidney slices (mPCKS) and in mice subjected to unilateral ureteral obstruction (UUO). The fibrotic response was evaluated on both the gene and protein level using qPCR and western blotting. Our results demonstrated that treatment with 1-MT or BMS-985205 markedly reduced TGF-β-mediated fibrosis in mPCKS, as seen by a decreased expression of collagen type 1, fibronectin, and α-smooth muscle actin. Moreover, IDO protein expression clearly increased following UUO, however, treatment of UUO mice with either 1-MT or BMS-986205 did not significantly affect the gene and protein expression of the tested fibrosis markers. However, both inhibitors significantly reduced the renal deposition of collagen in UUO mice as shown by Sirius red and trichrome staining. In conclusion, this study demonstrates that IDO antagonism effectively mitigates fibrogenesis in mPCKS and reduces renal collagen accumulation in UUO mice. These findings warrant further research into the clinical application of IDO inhibitors for the treatment of renal fibrosis
    corecore