5,530 research outputs found

    Allosteric Modulation of the Calcium-Sensing Receptor

    Get PDF
    The calcium (Ca2+)-sensing receptor (CaR) belongs to family C of the G-protein coupled receptors (GPCRs). The receptor is activated by physiological levels of Ca2+ (and Mg2+) and positively modulated by a range of proteinogenic L-α-amino acids. Recently, several synthetic allosteric modulators of the receptor have been developed, which either act as positive modulators (termed calcimimetics) or negative modulators (termed calcilytics). These ligands do not activate the wild-type receptor directly, but rather shift the concentration-response curves of Ca2+ to the left or right, respectively. Like other family C GPCRs, the CaR contains a large amino-terminal domain and a 7-transmembrane domain. Whereas the endogenous ligands for the receptor, Ca2+, Mg2+ and the L-α-amino acids, bind to the amino-terminal domain, most if not all of the synthetic modulators published so far bind to the 7-transmembrane domain

    Penetration of a salinity front into a rotating basin : laboratory experiments and a simple theory

    Get PDF
    Author Posting. © Sears Foundation for Marine Research, 2011. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 69 (2011): 603-645, doi:10.1357/002224011799849417.Freshwater is released along a wall of a basin containing salt water and rotating anticlockwise. The freshwater source is located near the surface between the center of the cylindrical basin and a corner along the wall. Experiments are performed with different discharge rates and the same rotation rate. The freshwater initially forms a bulge near the source, and then a buoyant gravity current bends to the right and flows along the wall toward the periphery of the basin. Separation of the current at the corner is never observed. The salinity front along the wall moves persistently away from the wall with a time scale greatly exceeding the rotation period. Its movement is compared to numerical solutions of a two-layer theory, where friction in the Ekman layer straddling the layer interface is the sole ageostrophic effect. The theory shows that the depth of the interface (h) satisfies a nonlinear diffusion equation. The symmetric part of the diffusion tensor causes light fluid to move down the gradient of h and represents the effect of vertical friction. The associated diffusivity reaches a maximum at h/δ = π/2, where δ is the Ekman layer depth. The antisymmetric part of the diffusion tensor causes light fluid to move perpendicularly to ∇h and represents the effect of geostrophic motion. The associated diffusivity increases monotonically with h/δ and greatly exceeds the diffusivity of the symmetric part if h/δ is of order of one or more. Comparison of numerical solutions with experimental data supports the theory.This study was supported by the Ocean and Climate Change Institute at WHOI

    Evolutionary conservation of Zinc-Activated Channel (ZAC) functionality in mammals: a range of mammalian ZACs assemble into cell surface-expressed functional receptors

    Get PDF
    In contrast to the other pentameric ligand-gated ion channels in the Cys-loop receptor superfamily, the ZACN gene encoding for the Zinc-Activated Channel (ZAC) is exclusively found in the mammalian genome. Human ZAC assembles into homomeric cation-selective channels gated by Zn2+, Cu2+ and H+, but the function of the receptor in human physiology is presently poorly understood. In this study, the degree of evolutionary conservation of a functional ZAC in mammals was probed by investigating the abilities of a selection of ZACs from 10 other mammalian species than human to be expressed at the protein level and assemble into cell surface-expressed functional receptors in mammalian cells and in Xenopus oocytes. In an enzyme-linked immunosorbent assay, transient transfections of tsA201 cells with cDNAs of hemagglutinin (HA)-epitope-tagged versions of these 10 ZACs resulted in robust total expression and cell surface expression levels of all proteins. Moreover, injection of cRNAs for 6 of these ZACs in oocytes resulted in the formation of functional receptors in two-electrode voltage-clamp recordings. The ZACs exhibited robust current amplitudes in response to Zn2+ (10 mM) and H+ (pH 4.0), and the concentration-response relationships displayed by Zn2+ at these channels were largely comparable to that at human ZAC. In conclusion, the findings suggest that the functionality of ZAC at the molecular level may be conserved throughout mammalian species, and that the channel thus may govern physiological functions in mammals, including humans

    ZAC in GtoPdb v.2023.1

    Get PDF
    The zinc-activated channel (ZAC, nomenclature as agreed by the NC-IUPHAR Subcommittee for the Zinc Activated Channel) is a member of the Cys-loop family that includes the nicotinic ACh, 5-HT3, GABAA and strychnine-sensitive glycine receptors [2, 3, 5]. The channel is likely to exist as a homopentamer of 4TM subunits that form an intrinsic cation selective channel equipermeable to Na+, K+ and Cs+, but impermeable to Ca2+ and Mg2+ [5]. ZAC displays constitutive activity that can be blocked by tubocurarine, TTFB and high concentrations of Ca2+ [5]. Although denoted ZAC, the channel is more potently activated by H+ and Cu2+, with greater and lesser efficacy than Zn2+, respectively [5]. Orthologs of the human ZACN gene are present in a wide range of mammalian genomes, but notably not in the mouse or rat genomes. [2, 3]

    ZAC (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The zinc-activated channel (ZAC, nomenclature as agreed by the NC-IUPHAR Subcommittee for the Zinc Activated Channel) is a member of the Cys-loop family that includes the nicotinic ACh, 5-HT3, GABAA and strychnine-sensitive glycine receptors [1, 2, 3]. The channel is likely to exist as a homopentamer of 4TM subunits that form an intrinsic cation selective channel equipermeable to Na+, K+ and Cs+, but impermeable to Ca2+ and Mg2+ [3]. ZAC displays constitutive activity that can be blocked by tubocurarine and high concentrations of Ca2+ [3]. Although denoted ZAC, the channel is more potently activated by protons and copper, with greater and lesser efficacy than zinc, respectively [3]. ZAC is present in the human, chimpanzee, dog, cow and opossum genomes, but is functionally absent from mouse, or rat, genomes [1, 2]

    ZAC in GtoPdb v.2021.3

    Get PDF
    The zinc-activated channel (ZAC, nomenclature as agreed by the NC-IUPHAR Subcommittee for the Zinc Activated Channel) is a member of the Cys-loop family that includes the nicotinic ACh, 5-HT3, GABAA and strychnine-sensitive glycine receptors [2, 3, 4]. The channel is likely to exist as a homopentamer of 4TM subunits that form an intrinsic cation selective channel equipermeable to Na+, K+ and Cs+, but impermeable to Ca2+ and Mg2+ [4]. ZAC displays constitutive activity that can be blocked by tubocurarine and high concentrations of Ca2+ [4]. Although denoted ZAC, the channel is more potently activated by H+ and Cu2+, with greater and lesser efficacy than Zn2+, respectively [4]. ZAC is present in the human, chimpanzee, dog, cow and opossum genomes, but is functionally absent from mouse, or rat, genomes [2, 3]

    Isotope shifts of the (3s3p)3^3P0,1,2_{0,1,2} - (3s4s)3^3S1_1 Mg I transitions

    Full text link
    We report measurements of the isotope shifts of the (3s3p)3^3P0,1,2_{0,1,2} - (3s4s)3^3S1_1 Mg I transitions for the stable isotopes 24^{24}Mg (I=0), 25^{25}Mg (I=5/2) and 26^{26}Mg (I=0). Furthermore the 25^{25}Mg 3^3S1_1 hyperfine coefficient A(3^3S1_1) = (-321.6 ±\pm 1.5) MHz is extracted and found to be in excellent agreement with state-of-the-art theoretical predictions giving A(3^3S1_1) = -325 MHz and B(3^3S1_1) ≃10−5\simeq 10^{-5} MHz. Compared to previous measurements, the data presented in this work is improved up to a factor of ten.Comment: 4 pages, 4 figures submitted to PR

    Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings

    Get PDF
    The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels of various GABAAR subunits were investigated by western blotting and RT-qPCR. In the MEA recordings, the pan-GABAAR agonist muscimol and the GABABR agonist baclofen were observed to mediate phenotypically distinct changes in cortical network activity. Selective augmentation of αβγ GABAAR signaling by diazepam and of δ-containing GABAAR (δ-GABAAR) signaling by DS1 produced pronounced changes in the majority of the activity parameters, both drugs mediating similar patterns of activity changes as muscimol. The apparent importance of δ-GABAAR signaling for network activity was largely corroborated by the effects induced by the functionally selective δ-GABAAR agonists THIP and Thio-THIP, whereas the δ-GABAAR selective potentiator DS2 only mediated modest effects on network activity, even when co-applied with low THIP concentrations. Interestingly, diazepam exhibited dramatically right-shifted concentration-response relationships at many of the activity parameters when co-applied with a trace concentration of DS1 compared to when applied alone. In contrast, the potencies and efficacies displayed by DS1 at the networks were not substantially altered by the concomitant presence of diazepam. In conclusion, the holistic nature of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical network activity and the putative functional interplay between these receptors in these neurons

    Long-term risk of cardiovascular and cerebrovascular disease after removal of the colonic microbiota by colectomy: a cohort study based on the Danish National Patient Register from 1996 to 2014

    Get PDF
    OBJECTIVES: The hypothesis of the study was that if the gut microbiota is involved in the development of atherosclerotic cardiovascular and cerebrovascular diseases (CVDs), total colectomy may reduce the long-term risk of CVDs. The aim was therefore to investigate the risk of CVD in patients after a total colectomy compared with patients undergoing other types of surgery, which are not expected to alter the gut microbiota or the CVD risk. SETTING: The Danish National Patient Register including all hospital discharges in Denmark from 1996 to 2014. PARTICIPANTS: Patients (n=1530) aged 45 years and above and surviving 1000 days after total colectomy without CVDs were selected and matched with five control patients who were also free of CVD 1000 days after other types of surgery. The five control patients were randomly selected from each of the three surgical groups: orthopaedic surgery, surgery in the gastrointestinal tract leaving it intact and other surgeries not related to the gastrointestinal tract or CVD (n=22 950). PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was the first occurring CVD event in any of the seven diagnostic domains (hypertensive disorders, acute ischaemic heart diseases, chronic ischaemic heart disease, cardiac arrhythmias, heart failure, cerebrovascular diseases and other arterial diseases) and the secondary outcomes were the first occurring event within each of these domains. RESULTS: Estimated by Cox proportional hazard models, the HRs of the composite CVD end point for patients with colectomy compared with the control patients were not significantly reduced (HR=0.94, 95% confidence limits 0.85 to 1.04). Among the seven CVD domains, only the risk of hypertensive disorders was significantly reduced (HR=0.85, 0.73 to 0.98). CONCLUSIONS: Colectomy did not reduce the general risk of CVD, but reduced the risk of hypertensive disorders, most likely due to salt and water depletion induced by colectomy. These results encourage a reappraisal of the associations between gut microbiota and CVD
    • …
    corecore