42,826 research outputs found

    Critical exponents of the pair contact process with diffusion

    Full text link
    We study the pair contact process with diffusion (PCPD) using Monte Carlo simulations, and concentrate on the decay of the particle density ρ\rho with time, near its critical point, which is assumed to follow ρ(t)ctδ+c2tδ2+...\rho(t) \approx ct^{-\delta} +c_2t^{-\delta_2}+.... This model is known for its slow convergence to the asymptotic critical behavior; we therefore pay particular attention to finite-time corrections. We find that at the critical point, the ratio of ρ\rho and the pair density ρp\rho_p converges to a constant, indicating that both densities decay with the same powerlaw. We show that under the assumption δ22δ\delta_2 \approx 2 \delta, two of the critical exponents of the PCPD model are δ=0.165(10)\delta = 0.165(10) and β=0.31(4)\beta = 0.31(4), consistent with those of the directed percolation (DP) model

    A solvable non-conservative model of Self-Organized Criticality

    Full text link
    We present the first solvable non-conservative sandpile-like critical model of Self-Organized Criticality (SOC), and thereby substantiate the suggestion by Vespignani and Zapperi [A. Vespignani and S. Zapperi, Phys. Rev. E 57, 6345 (1998)] that a lack of conservation in the microscopic dynamics of an SOC-model can be compensated by introducing an external drive and thereby re-establishing criticality. The model shown is critical for all values of the conservation parameter. The analytical derivation follows the lines of Broeker and Grassberger [H.-M. Broeker and P. Grassberger, Phys. Rev. E 56, 3944 (1997)] and is supported by numerical simulation. In the limit of vanishing conservation the Random Neighbor Forest Fire Model (R-FFM) is recovered.Comment: 4 pages in RevTeX format (2 Figures) submitted to PR

    Complex coupled-cluster approach to an ab-initio description of open quantum systems

    Get PDF
    We develop ab-initio coupled-cluster theory to describe resonant and weakly bound states along the neutron drip line. We compute the ground states of the helium chain 3-10He within coupled-cluster theory in singles and doubles (CCSD) approximation. We employ a spherical Gamow-Hartree-Fock basis generated from the low-momentum N3LO nucleon-nucleon interaction. This basis treats bound, resonant, and continuum states on equal footing, and is therefore optimal for the description of properties of drip line nuclei where continuum features play an essential role. Within this formalism, we present an ab-initio calculation of energies and decay widths of unstable nuclei starting from realistic interactions.Comment: 4 pages, revtex

    Medium-mass nuclei from chiral nucleon-nucleon interactions

    Full text link
    We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-cluster theory and employ the "bare" chiral nucleon-nucleon interaction at order N3LO. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per nucleon within the CCSD approximation. The binding-energy difference between the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.Comment: 5 pages, 5 figure

    New Insights on Interstellar Gas-Phase Iron

    Full text link
    In this paper, we report on the gas-phase abundance of singly-ionized iron (Fe II) for 51 lines of sight, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE). Fe II column densities are derived by measuring the equivalent widths of several ultraviolet absorption lines and subsequently fitting those to a curve of growth. Our derivation of Fe II column densities and abundances creates the largest sample of iron abundances in moderately- to highly-reddened lines of sight explored with FUSE, lines of sight that are on average more reddened than lines of sight in previous Copernicus studies. We present three major results. First, we observe the well-established correlation between iron depletion and and also find trends between iron depletion and other line of sight parameters (e.g. f(H_2), E_(B-V), and A_V), and examine the significance of these trends. Of note, a few of our lines of sight probe larger densities than previously explored and we do not see significantly enhanced depletion effects. Second, we present two detections of an extremely weak Fe II line at 1901.773 A in the archival STIS spectra of two lines of sight (HD 24534 and HD 93222). We compare these detections to the column densities derived through FUSE spectra and comment on the line's f-value and utility for future studies of Fe II. Lastly, we present strong anecdotal evidence that the Fe II f-values derived empirically through FUSE data are more accurate than previous values that have been theoretically calculated, with the probable exception of f_1112.Comment: Accepted for publication in ApJ, 669, 378; see ApJ version for small updates. 53 total pages (preprint format), 7 tables, 11 figure
    corecore