11 research outputs found
Cosmology from cross-correlation of ACT-DR4 CMB lensing and DES-Y3 cosmic shear
Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT
The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis
International audienceWe study the effects due to mismatches in passbands, polarization angles, and temperature and polarization calibrations in the context of the upcoming cosmic microwave background experiment Simons Observatory (SO). Using the SO multi-frequency likelihood, we estimate the bias and the degradation of constraining power in cosmological and astrophysical foreground parameters assuming different levels of knowledge of the instrumental effects. We find that incorrect but reasonable assumptions on the values of all the systematics examined here can have important effects in cosmological analyses, hence requiring marginalization approaches at likelihood level. When doing so, we find that the most relevant effect is due to bandpass shifts. When marginalizing over them, the posteriors of parameters describing astrophysical microwave foregrounds (such as radio point sources or dust) get degraded, while cosmological parameters constraints are not significantly affected. Marginalization over polarization angles with up to 0.25 uncertainty causes an irrelevant bias in all parameters. Marginalization over calibration factors in polarization broadens the constraints on the effective number of relativistic degrees of freedom by a factor 1.2, interpreted here as a proxy parameter for non standard model physics targeted by high-resolution CMB measurements
The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis
International audienceWe study the effects due to mismatches in passbands, polarization angles, and temperature and polarization calibrations in the context of the upcoming cosmic microwave background experiment Simons Observatory (SO). Using the SO multi-frequency likelihood, we estimate the bias and the degradation of constraining power in cosmological and astrophysical foreground parameters assuming different levels of knowledge of the instrumental effects. We find that incorrect but reasonable assumptions on the values of all the systematics examined here can have important effects in cosmological analyses, hence requiring marginalization approaches at likelihood level. When doing so, we find that the most relevant effect is due to bandpass shifts. When marginalizing over them, the posteriors of parameters describing astrophysical microwave foregrounds (such as radio point sources or dust) get degraded, while cosmological parameters constraints are not significantly affected. Marginalization over polarization angles with up to 0.25 uncertainty causes an irrelevant bias in all parameters. Marginalization over calibration factors in polarization broadens the constraints on the effective number of relativistic degrees of freedom by a factor 1.2, interpreted here as a proxy parameter for non standard model physics targeted by high-resolution CMB measurements
The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis
International audienceWe study the effects due to mismatches in passbands, polarization angles, and temperature and polarization calibrations in the context of the upcoming cosmic microwave background experiment Simons Observatory (SO). Using the SO multi-frequency likelihood, we estimate the bias and the degradation of constraining power in cosmological and astrophysical foreground parameters assuming different levels of knowledge of the instrumental effects. We find that incorrect but reasonable assumptions on the values of all the systematics examined here can have important effects in cosmological analyses, hence requiring marginalization approaches at likelihood level. When doing so, we find that the most relevant effect is due to bandpass shifts. When marginalizing over them, the posteriors of parameters describing astrophysical microwave foregrounds (such as radio point sources or dust) get degraded, while cosmological parameters constraints are not significantly affected. Marginalization over polarization angles with up to 0.25 uncertainty causes an irrelevant bias in all parameters. Marginalization over calibration factors in polarization broadens the constraints on the effective number of relativistic degrees of freedom by a factor 1.2, interpreted here as a proxy parameter for non standard model physics targeted by high-resolution CMB measurements
The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis
International audienceWe study the effects due to mismatches in passbands, polarization angles, and temperature and polarization calibrations in the context of the upcoming cosmic microwave background experiment Simons Observatory (SO). Using the SO multi-frequency likelihood, we estimate the bias and the degradation of constraining power in cosmological and astrophysical foreground parameters assuming different levels of knowledge of the instrumental effects. We find that incorrect but reasonable assumptions on the values of all the systematics examined here can have important effects in cosmological analyses, hence requiring marginalization approaches at likelihood level. When doing so, we find that the most relevant effect is due to bandpass shifts. When marginalizing over them, the posteriors of parameters describing astrophysical microwave foregrounds (such as radio point sources or dust) get degraded, while cosmological parameters constraints are not significantly affected. Marginalization over polarization angles with up to 0.25 uncertainty causes an irrelevant bias in all parameters. Marginalization over calibration factors in polarization broadens the constraints on the effective number of relativistic degrees of freedom by a factor 1.2, interpreted here as a proxy parameter for non standard model physics targeted by high-resolution CMB measurements
Cosmology from Cross-Correlation of ACT-DR4 CMB Lensing and DES-Y3 Cosmic Shear
International audienceCross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and data, where most of the contamination due to the thermal Sunyaev Zel'dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution () with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6x2pt analysis between DES and ACT
Cosmology from cross-correlation of ACT-DR4 CMB lensing and DES-Y3 cosmic shear
Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel'dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio =7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8≡σ8(Ωm/0.3)0.5=0.782±0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6x2pt analysis between DES and ACT
Cosmology from Cross-Correlation of ACT-DR4 CMB Lensing and DES-Y3 Cosmic Shear
International audienceCross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and data, where most of the contamination due to the thermal Sunyaev Zel'dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution () with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6x2pt analysis between DES and ACT
Safety and efficacy of non-steroidal anti-inflammatory drugs to reduce ileus after colorectal surgery
Background: Ileus is common after elective colorectal surgery, and is associated with increased adverse events and prolonged hospital stay. The aim was to assess the role of non-steroidal anti-inflammatory drugs (NSAIDs) for reducing ileus after surgery. Methods: A prospective multicentre cohort study was delivered by an international, student- and trainee-led collaborative group. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The primary outcome was time to gastrointestinal recovery, measured using a composite measure of bowel function and tolerance to oral intake. The impact of NSAIDs was explored using Cox regression analyses, including the results of a centre-specific survey of compliance to enhanced recovery principles. Secondary safety outcomes included anastomotic leak rate and acute kidney injury. Results: A total of 4164 patients were included, with a median age of 68 (i.q.r. 57\u201375) years (54\ub79 per cent men). Some 1153 (27\ub77 per cent) received NSAIDs on postoperative days 1\u20133, of whom 1061 (92\ub70 per cent) received non-selective cyclo-oxygenase inhibitors. After adjustment for baseline differences, the mean time to gastrointestinal recovery did not differ significantly between patients who received NSAIDs and those who did not (4\ub76 versus 4\ub78 days; hazard ratio 1\ub704, 95 per cent c.i. 0\ub796 to 1\ub712; P = 0\ub7360). There were no significant differences in anastomotic leak rate (5\ub74 versus 4\ub76 per cent; P = 0\ub7349) or acute kidney injury (14\ub73 versus 13\ub78 per cent; P = 0\ub7666) between the groups. Significantly fewer patients receiving NSAIDs required strong opioid analgesia (35\ub73 versus 56\ub77 per cent; P < 0\ub7001). Conclusion: NSAIDs did not reduce the time for gastrointestinal recovery after colorectal surgery, but they were safe and associated with reduced postoperative opioid requirement
Safety of hospital discharge before return of bowel function after elective colorectal surgery
© 2020 BJS Society Ltd Published by John Wiley & Sons LtdBackground: Ileus is common after colorectal surgery and is associated with an increased risk of postoperative complications. Identifying features of normal bowel recovery and the appropriateness for hospital discharge is challenging. This study explored the safety of hospital discharge before the return of bowel function. Methods: A prospective, multicentre cohort study was undertaken across an international collaborative network. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The main outcome of interest was readmission to hospital within 30 days of surgery. The impact of discharge timing according to the return of bowel function was explored using multivariable regression analysis. Other outcomes were postoperative complications within 30 days of surgery, measured using the Clavien–Dindo classification system. Results: A total of 3288 patients were included in the analysis, of whom 301 (9·2 per cent) were discharged before the return of bowel function. The median duration of hospital stay for patients discharged before and after return of bowel function was 5 (i.q.r. 4–7) and 7 (6–8) days respectively (P < 0·001). There were no significant differences in rates of readmission between these groups (6·6 versus 8·0 per cent; P = 0·499), and this remained the case after multivariable adjustment for baseline differences (odds ratio 0·90, 95 per cent c.i. 0·55 to 1·46; P = 0·659). Rates of postoperative complications were also similar in those discharged before versus after return of bowel function (minor: 34·7 versus 39·5 per cent; major 3·3 versus 3·4 per cent; P = 0·110). Conclusion: Discharge before return of bowel function after elective colorectal surgery appears to be safe in appropriately selected patients