12 research outputs found

    Zu Algorithmen der Analyse biochemischer Systeme

    No full text
    Die letzten Jahrzehnte brachten einen enormen Zuwachs des Wissens und Verständnisses über die molekularen Prozesse des Lebens.Möglich wurde dieser Zuwachs durch die Entwicklung diverser Methoden, mit denen beispielsweise gezielt die Konzentration einzelner Stoffe gemessen werden kann oder gar alle anwesenden Metaboliten eines biologischen Systems erfasst werden können. Die großflächige Anwendung dieser Methoden führte zur Ansammlung vieler unterschiedlicher -om-Daten, wie zum Beispiel Metabolom-, Proteom- oder Transkriptoms-Datensätzen. Die Systembiologie greift auf solche Daten zurück, um mathematische Modelle biologischer Systeme zu erstellen, und ermöglicht so ein Studium biologischer Systeme auch außerhalb des Labors. Für größere biologische Systeme stehen jedoch meistens nicht alle Informationen über Stoffkonzentrationen oder Reaktionsgeschwindigkeiten zur Verfügung, um eine quantitative Modellierung, also die Beschreibung von Änderungsraten kontinuierlicher Variablen, durchführen zu können. In einem solchen Fall wird auf Methoden der qualitativen Modellierung zurückgegriffen. Eine dieser Methoden sind die Petrinetze (PN), welche in den 1960er Jahren von Carl Adam Petri entwickelt wurden, um nebenläufige Prozesse im technischen Umfeld zu beschreiben. Seit Anfang der 1990er Jahre finden PN auch Anwendung in der Systembiologie, um zum Beispiel metabolische Systeme oder Signaltransduktionswege zu modellieren. Einer der Vorteile dieser Methode ist zudem, dass Modelle als qualitative Beschreibung des Systems begonnen werden können und im Laufe der Zeit um quantitative Beschreibungen ergänzt werden können. Zur Modellierung und Analyse von PN existieren bereits viele Anwendungen. Da das Konzept der PN jedoch ursprünglich nicht für die Systembiologie entwickelt wurde und meist im technischen Bereich verwendet wird, existierten kaum Anwendungen, die für den Einsatz in der Systembiologie entwickelt wurden. Daher ist auch die Durchführung der für die Systembiologie entwickelten Analysemethoden für PN nicht mit diesen Anwendungen möglich. Die Motivation des ersten Teiles dieser Arbeit war daher, eine Anwendung zu schaffen, die speziell für die PN-Modellierung und Analyse in der Systembiologie gedacht ist, also in ihren Analysemethoden und ihrer Terminologie sich an den Bedürfnissen der Systembiologie orientiert. Zudem sollte die Anwendung den Anwender bei der Auswertung der Resultate der Analysemethoden visuell unterstützen, indem diese direkt visuell im Kontext des PN gesetzt werden. Da bei komplexeren PN die Resultate der Analysemethoden in ihrer Zahl drastisch anwachsen, wird eine solche Auswertung dieser notwendig. Aus dieser Motivation heraus entstand die Anwendung MonaLisa, dessen Implementierung und Funktionen im ersten Teil der vorliegenden Arbeit beschrieben werden. Neben den klassischen Analysemethoden für PN, wie den Transitions- und Platz-Invarianten, mit denen grundlegende funktionale Module innerhalb eines PN gefunden werden können, wurden weitere, meist durch die Systembiologie entwickelte, Analysemethoden implementiert. Dazu zählen zum Beispiel die Minimal Cut Sets, die Maximal Common Transitions Sets oder Knock-out-Analysen. Mit MonaLisa ist aber auch die Simulation des dynamischen Verhaltens des modellierten biologischen Systems möglich. Hierzu stehen sowohl deterministische als auch stochastische Verfahren, beispielsweise der Algorithmus von Gillespie zur Simulation chemischer Systeme, zur Verfügung. Für alle zur Verfügung gestellten Analysemethoden wird ebenfalls eine visuelle Repräsentation ihrer Resultate bereitgestellt. Im Falle der Invarianten werden deren Elemente beispielsweise in der Visualisierung des PN eingefärbt. Die Resultate der Simulationen oder der topologischen Analyse können durch verschiedene Graphen ausgewertet werden. Um eine Schnittstelle zu anderen Anwendungen zu schaffen, wurde für MonaLisa eine Unterstützung einiger gängiger Dateiformate der Systembiologie geschaffen, so z.B. für SBML und KGML. Der zweite Teil der Arbeit beschäftigt sich mit der topologischen Analyse eines Datensatzes von 2641 Gesamtgenom Modellen aus der path2models-Datenbank. Diese Modelle wurden automatisiert aus dem vorhandenen Wissen der KEGG- und der MetaCyc-Datenbank erstellt. Die Analyse der topologischen Eigenschaften eines Graphen ermöglicht es, grundlegende Aussagen über die globalen Eigenschaften des modellierten Systems und dessen Entstehungsprozesses zu treffen. Daher ist eine solche Analyse oft der erste Schritt für das Verständnis eines komplexen biologischen Systems. Für die Analyse der Knotengrade aller Reaktionen und Metaboliten dieser Modelle wurden sie in einem ersten Schritt in PN transformiert. Die topologischen Eigenschaften von metabolischen Systemen werden in der Literatur schon sehr gut beschrieben, wobei die Untersuchungen meist auf einem Netzwerk der Metaboliten oder der Reaktionen basieren. Durch die Verwendung von PN wird es möglich, die topologischen Eigenschaften von Metaboliten und Reaktionen in einem gemeinsamen Netzwerk zu untersuchen. Die Motivation hinter diesen Untersuchungen war, zu überprüfen, ob die schon beschriebenen Eigenschaften auch für eine Darstellung als PN zutreffen und welche neuen Eigenschaften gefunden werden können. Untersucht wurden der Knotengrad und der Clusterkoeffizient der Modelle. Es wird gezeigt, dass einige wenige Metaboliten mit sehr hohem Knotengrad für eine ganze Reihe von Effekten verantwortlich sind, wie beispielsweise dass die Verteilung des Knotengrades und des Clusterkoeffizienten, im Bezug auf Metaboliten, skalenfrei sind und dass sie für die Vernetzung der Nachbarschaft von Reaktionen verantwortlich sind. Weiter wird gezeigt, dass die Größe eines Modelles Einfluss auf dessen topologische Eigenschaften hat. So steigt die Vernetzung der Nachbarschaft eines Metaboliten, je mehr Metaboliten in einem biologischen System vorhanden sind, gleiches gilt für den durchschnittlichen Knotengrad der Metaboliten

    50 years of amino acid hydrophobicity scales : revisiting the capacity for peptide classification

    Get PDF
    Background: Physicochemical properties are frequently analyzed to characterize protein-sequences of known and unknown function. Especially the hydrophobicity of amino acids is often used for structural prediction or for the detection of membrane associated or embedded β-sheets and α-helices. For this purpose many scales classifying amino acids according to their physicochemical properties have been defined over the past decades. In parallel, several hydrophobicity parameters have been defined for calculation of peptide properties. We analyzed the performance of separating sequence pools using 98 hydrophobicity scales and five different hydrophobicity parameters, namely the overall hydrophobicity, the hydrophobic moment for detection of the α-helical and β-sheet membrane segments, the alternating hydrophobicity and the exact ß-strand score. Results: Most of the scales are capable of discriminating between transmembrane α-helices and transmembrane β-sheets, but assignment of peptides to pools of soluble peptides of different secondary structures is not achieved at the same quality. The separation capacity as measure of the discrimination between different structural elements is best by using the five different hydrophobicity parameters, but addition of the alternating hydrophobicity does not provide a large benefit. An in silico evolutionary approach shows that scales have limitation in separation capacity with a maximal threshold of 0.6 in general. We observed that scales derived from the evolutionary approach performed best in separating the different peptide pools when values for arginine and tyrosine were largely distinct from the value of glutamate. Finally, the separation of secondary structure pools via hydrophobicity can be supported by specific detectable patterns of four amino acids. Conclusion: It could be assumed that the quality of separation capacity of a certain scale depends on the spacing of the hydrophobicity value of certain amino acids. Irrespective of the wealth of hydrophobicity scales a scale separating all different kinds of secondary structures or between soluble and transmembrane peptides does not exist reflecting that properties other than hydrophobicity affect secondary structure formation as well. Nevertheless, application of hydrophobicity scales allows distinguishing between peptides with transmembrane α-helices and β-sheets. Furthermore, the overall separation capacity score of 0.6 using different hydrophobicity parameters could be assisted by pattern search on the protein sequence level for specific peptides with a length of four amino acids

    50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification

    No full text
    BACKGROUND: Physicochemical properties are frequently analyzed to characterize protein-sequences of known and unknown function. Especially the hydrophobicity of amino acids is often used for structural prediction or for the detection of membrane associated or embedded β-sheets and α-helices. For this purpose many scales classifying amino acids according to their physicochemical properties have been defined over the past decades. In parallel, several hydrophobicity parameters have been defined for calculation of peptide properties. We analyzed the performance of separating sequence pools using 98 hydrophobicity scales and five different hydrophobicity parameters, namely the overall hydrophobicity, the hydrophobic moment for detection of the α-helical and β-sheet membrane segments, the alternating hydrophobicity and the exact β-strand score. RESULTS: Most of the scales are capable of discriminating between transmembrane α-helices and transmembrane β-sheets, but assignment of peptides to pools of soluble peptides of different secondary structures is not achieved at the same quality. The separation capacity as measure of the discrimination between different structural elements is best by using the five different hydrophobicity parameters, but addition of the alternating hydrophobicity does not provide a large benefit. An in silico evolutionary approach shows that scales have limitation in separation capacity with a maximal threshold of 0.6 in general. We observed that scales derived from the evolutionary approach performed best in separating the different peptide pools when values for arginine and tyrosine were largely distinct from the value of glutamate. Finally, the separation of secondary structure pools via hydrophobicity can be supported by specific detectable patterns of four amino acids. CONCLUSION: It could be assumed that the quality of separation capacity of a certain scale depends on the spacing of the hydrophobicity value of certain amino acids. Irrespective of the wealth of hydrophobicity scales a scale separating all different kinds of secondary structures or between soluble and transmembrane peptides does not exist reflecting that properties other than hydrophobicity affect secondary structure formation as well. Nevertheless, application of hydrophobicity scales allows distinguishing between peptides with transmembrane α-helices and β-sheets. Furthermore, the overall separation capacity score of 0.6 using different hydrophobicity parameters could be assisted by pattern search on the protein sequence level for specific peptides with a length of four amino acids

    MOESM5 of 50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification

    No full text
    Additional file 5: Table S4. Amino acid pattern of length 4. Given is the sequence pool 1 (column 1) and sequence pool 2 (column 2), the separation capacity between pools based on hydrophobicity (column 3), the maximal difference in the frequency of occurrence (FO) pattern value (column 4), the minimal difference in the FO pattern value (column 5), the number of overrepresented pattern from pool1 in contrast to pool2 (column 6) and the top 5 of identified pattern of length 4

    MOESM10 of 50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification

    No full text
    Additional file 8: Figure S3. Correlation of amino acid hydrophobicity distance to evolution scale and separation capacity score of real hydrophobicity scale. Shown is the correlation via linear fit between the separation capacity for the 98 real hydrophobicity scales and the distance of hydrophobicity value of a single amino acid to the in silico evolved scale. The single amino acids are distributed to four graphs (A–D) concerning their slope of the individual linear fit. (A) Raising slope red; (B) slightly raising slope blue; (C) no raising slope black; (D) falling slope green

    Pittosporum illicioides Makino

    No full text
    原著和名: コヤスノキ科名: トベラ科 = Pittosporaceae採集地: 兵庫県 相生市 三濃山 (播磨 相生市 三濃山)採集日: 1966/8/5採集者: 萩庭丈壽整理番号: JH041768国立科学博物館整理番号: TNS-VS-99176

    MOESM8 of 50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification

    No full text
    Additional file 10: Figure S4. Organigram of improved hydrophobicity scales. Shown is the relation of hydrophobicity scales with respect to their origin. The dependencies (shown by directed graph) are based on exhaustive literature search. The green marked hydrophobicity scales were included in our study and the red ones not

    Identification and Expression Analysis of Ribosome Biogenesis Factor Co-orthologs in

    No full text
    Ribosome biogenesis involves a large inventory of proteinaceous and RNA cofactors. More than 250 ribosome biogenesis factors (RBFs) have been described in yeast. These factors are involved in multiple aspects like rRNA processing, folding, and modification as well as in ribosomal protein (RP) assembly. Considering the importance of RBFs for particular developmental processes, we examined the complexity of RBF and RP (co-)orthologs by bioinformatic assignment in 14 different plant species and expression profiling in the model crop Solanum lycopersicum. Assigning (co-)orthologs to each RBF revealed that at least 25% of all predicted RBFs are encoded by more than one gene. At first we realized that the occurrence of multiple RBF co-orthologs is not globally correlated to the existence of multiple RP co-orthologs. The transcript abundance of genes coding for predicted RBFs and RPs in leaves and anthers of S. lycopersicum was determined by next generation sequencing (NGS). In combination with existing expression profiles, we can conclude that co-orthologs of RBFs by large account for a preferential function in different tissue or at distinct developmental stages. This notion is supported by the differential expression of selected RBFs during male gametophyte development. In addition, co-regulated clusters of RBF and RP coding genes have been observed. The relevance of these results is discussed
    corecore