2 research outputs found

    Quantum quenches of ion Coulomb crystals across structural instabilities

    Full text link
    Quenches in an ion chain can create coherent superpositions of motional states across the linear-zigzag structural transition. The procedure has been described in [Phys. Rev. A 84, 063821 (2011)] and makes use of spin-dependent forces, so that a coherent superposition of the electronic states of one ion evolves into an entangled state between the chain's internal and external degrees of freedom. The properties of the crystalline state so generated are theoretically studied by means of Ramsey interferometry on one ion of the chain. An analytical expression for the visibility of the interferometric measurement is obtained for a chain of arbitrary number of ions and as a function of the time elapsed after the quench. Sufficiently close to the linear-zigzag instability the visibility decays very fast, but exhibits revivals at the period of oscillation of the mode that drives the structural instability. These revivals have a periodicity that is independent of the crystal size, and they signal the creation of entanglement by the quantum quench.Comment: 14 pages, 8 figures; added a paragraph in the introduction providing more background, added paragraph at the end of Sec. IV discussing experimental parameter

    Quantum superpositions of crystalline structures

    Full text link
    A procedure is discussed for creating coherent superpositions of motional states of ion strings. The motional states are across the structural transition linear-zigzag, and their coherent superposition is achieved by means of spin-dependent forces, such that a coherent superposition of the electronic states of one ion evolves into an entangled state between the chain's internal and external degrees of freedom. It is shown that the creation of such an entangled state can be revealed by performing Ramsey interferometry with one ion of the chain.Comment: 10 pages, 9 figure
    corecore