17,971 research outputs found

    Spruce Budworm and Other Lepidopterous Prey of Eumenid Wasps (Hymenoptera: Eumenidae) in Spruce-Fir Forests of Maine

    Get PDF
    Three species of eumenid wasps, Ancistrocerus adiabatus, Ancistrocerus antilope, and Euodynerus Ieucomelas, accepted and provisioned trap-nesting blocks with lepidopterous larvae, A pyralid. Nephopteryx sp., was the most commonly provisioned prey. A. adiabarus and E. leucomelas preyed on late instars of the spruce budworm, Choristoneura fumiferana: however. budworms accounted for only 6% of the provisioned prey. Estimates of budworm population densities before and after wasp predation, and subsample-s of provisioned prey indicated no significant reductions i = 0.065%) in budworm populations attributable to trap-nesting wasps

    Heuristic bidding strategies for multiple heterogeneous auctions

    No full text
    This paper investigates utility maximising bidding heuristics for agents that participate in multiple heterogeneous auctions, in which the auction format and the starting and closing times can be different. Our strategy allows an agent to procure one or more items and to participate in any number of auctions. For this case, forming an optimal bidding strategy by global utility maximisation is computationally intractable, and so we develop two-stage heuristics that first provide reasonable bidding thresholds with simple strategies before deciding which auctions to participate in. The proposed approach leads to an average gain of at least 24% in agent utility over commonly used benchmarks

    Detection and emotional evaluation of an electric vehicle’s exterior sound in a simulated environment

    Get PDF
    Electric vehicles are quiet at low speeds and thus potentially pose a threat to pedestrians’ safety. Laws are formulating worldwide that mandate these vehicles emit sounds to alert the pedestrians of the vehicles’ approach. It is necessary that these sounds promote a positive perception of the vehicle brand, and understanding their impact on soundscapes is also important. Detection time of the vehicle sounds is an important measure to assess pedestrians’ safety. Emotional evaluation of these sounds influences assessment of the vehicle brand. Laboratory simulation is a new approach for evaluating exterior automotive sounds. This study describes the implementation of laboratory simulation to compare the detection time and emotional evaluation of artificial sounds for an electric vehicle. An Exterior Sound Simulator simulated audio-visual stimuli of an electric car passing a crossroad of a virtual town at 4.47 ms-1 (10 mph), from the perspective of a pedestrian standing at the crossroad. In this environment, 15 sounds were tested using experiments where participants detected the car and evaluated its sound using perceptual dimensions. Results show that these sounds vary significantly in their detection times and emotional evaluations, but crucially that traditional metrics like dB(A) do not always relate to the detection of these sounds. Detection time and emotional evaluation do not have significant correlation. Hence, sounds of a vehicle could be detected quickly, but may portray negative perceptions of the vehicle. Simulation provides a means to more fully evaluate potential electric vehicle sounds against the competing criteria

    Consensus Acceleration in Multiagent Systems with the Chebyshev Semi-Iterative Method

    No full text
    We consider the fundamental problem of reaching consensus in multiagent systems; an operation required in many applications such as, among others, vehicle formation and coordination, shape formation in modular robotics, distributed target tracking, and environmental modeling. To date, the consensus problem (the problem where agents have to agree on their reported values) has been typically solved with iterative decentralized algorithms based on graph Laplacians. However, the convergence of these existing consensus algorithms is often too slow for many important multiagent applications, and thus they are increasingly being combined with acceleration methods. Unfortunately, state-of-the-art acceleration techniques require parameters that can be optimally selected only if complete information about the network topology is available, which is rarely the case in practice. We address this limitation by deriving two novel acceleration methods that can deliver good performance even if little information about the network is available. The first proposed algorithm is based on the Chebyshev semi-iterative method and is optimal in a well defined sense; it maximizes the worst-case convergence speed (in the mean sense) given that only rough bounds on the extremal eigenvalues of the network matrix are available. It can be applied to systems where agents use unreliable communication links, and its computational complexity is similar to those of simple Laplacian-based methods. This algorithm requires synchronization among agents, so we also propose an asynchronous version that approximates the output of the synchronous algorithm. Mathematical analysis and numerical simulations show that the convergence speed of the proposed acceleration methods decrease gracefully in scenarios where the sole use of Laplacian-based methods is known to be impractical

    Too sick to drive : how motion sickness severity impacts human performance

    Get PDF
    There are multiple concerns surrounding the development and rollout of self-driving cars. One issue has largely gone unnoticed - the adverse effects of motion sickness as induced by self-driving cars. The literature suggests conditionally, highly and fully autonomous vehicles will increase the onset likelihood and severity of motion sickness. Previous research has shown motion sickness can have a significant negative impact on human performance. This paper uses a simulator study design with 51 participants to assess if the scale of motion sickness is a predictor of human performance degradation. This paper finds little proof that subjective motion sickness severity is an effective indicator of the scale of human performance degradation. The performance change of participants with lower subjective motion sickness is mostly statistically indistinguishable from those with higher subjective sickness. Conclusively, those with even acute motion sickness may be just as affected as those with higher sickness, considering human performance. Building on these results, it could indicate motion sickness should be a consideration for understanding user ability to regain control of a self-driving vehicle, even if not feeling subjectively unwell. Effectiveness of subjective scoring is discussed and future research is proposed to help ensure the successful rollout of self-driving vehicles

    An investigation on the effect of driver style and driving events on energy demand of a PHEV

    Get PDF
    Environmental concerns, security of fuel supply and CO2 regulations are driving innovation in the automotive industry towards electric and hybrid electric vehicles. The fuel economy and emission performance of hybrid electric vehicles (HEVs) strongly depends on the energy management system (EMS). Prior knowledge of driving information could be used to enhance the performance of a HEV. However, how the necessary information can be obtained to use in EMS optimisation still remains a challenge. In this paper the effect of driver style and driving events like city and highway driving on plug in hybrid electric vehicle (PHEV) energy demand is studied. Using real world driving data from three drivers of very different driver style, a simulation has been exercised for a given route having city and highway driving. Driver style and driving events both affect vehicle energy demand. In both driving events considered, vehicle energy demand is different due to driver styles. The major part of city driving is reactive driving influenced by external factors and driver leading to variation in vehicle speed and hence energy demand. In free highway driving, the driver choice of cruise speed is the only factor affecting vehicle energy demand

    Breaking the habit: measuring and predicting departures from routine in individual human mobility

    No full text
    Researchers studying daily life mobility patterns have recently shown that humans are typically highly predictable in their movements. However, no existing work has examined the boundaries of this predictability, where human behaviour transitions temporarily from routine patterns to highly unpredictable states. To address this shortcoming, we tackle two interrelated challenges. First, we develop a novel information-theoretic metric, called instantaneous entropy, to analyse an individual’s mobility patterns and identify temporary departures from routine. Second, to predict such departures in the future, we propose the first Bayesian framework that explicitly models breaks from routine, showing that it outperforms current state-of-the-art predictor
    • 

    corecore