176 research outputs found

    Gas-phase H/D exchange reactions of polyamine complexes: (M + H)+, (M + alkali metal+), and (M + 2H)2+

    Get PDF
    AbstractGas-phase hydrogen/deuterium exchange reactions between noncovalent polyamine complexes and D2O, CH3OD, or ND3 are undertaken in a quadrupole ion trap mass spectrometer. Structural features of the protonated polyamines can be differentiated by the rates and overall extent of exchange, specifically the presence of propylene units and/or a cyclic structure noticeably decreases exchange compared to the exchange observed for acyclic polyamines with only ethylene bridges between amino groups. Significant differences are observed for singly protonated vs. doubly protonated complexes, where the doubly protonated complexes undergo more efficient exchange at a higher rate than the analogous singly protonated complexes. Molecular modeling calculations suggest that more diffuse conformations may exist for the higher charge states, thus facilitating H/D exchange. In addition, H/D exchange reactions between the alkali metal cationized complexes and ND3 are nearly quenched, compared to the significant exchange seen for singly protonated complexes. A conformational change or the loss of a low energy reaction pathway may explain the limited exchange reactions seen when a bulky cation replaces a proton in the complex

    Gas-phase complexation of polyethers with halide ions

    Get PDF
    AbstractGas-phase complexes of halide anions with a variety of crown ethers and acyclic analogs are formed by ion-molecule reactions in the chemical ionization source of a triple-quadrupole mass spectrometer. The ether complexes of iodide, bromide, and chloride dissociate on collisional activation by cleavage of the halide-ether electrostatic hydrogen bonds, resulting in the formation of bare halide anions. By contrast, the fluoride complexes dissociate by loss of HF, which may occur in conjunction or sequentially with losses of ethylene oxide units. This dissociation of behavior is similar to that observed for collisionally activated dissociation of [M — H]− ions of the crown ethers and suggests that the fluoride ion is capable of promoting an intramolecular proton abstraction within the [M + F]− complex. This type of dissociation chemistry is only observed for the fluoride ion complexes, and the fluoride ion is the most basic of all the halides. The kinetic method was used to establish orders of relative halide binding strengths, and the trends for the chloride and bromide affinities were 12-crown-4 < triethylene glycol dimethyl ether < 15-crown-5 < tetraethylene glycol dimethyl ether < 18-crown-6 < 21-crown-7 < tetraethylene glycol < pentaethylene glycol < 1,4,7,10,13-pentathiacyclopentadecane

    Threshold dissociation and molecular modeling of transition metal complexes of flavonoids

    Get PDF
    The relative threshold dissociation energies of a series of flavonoid/transition metal/auxiliary ligand complexes of the type [MII (flavonoid − H) auxiliary ligand]+ formed by electrospray ionization (ESI) were measured by energy-variable collisionally activated dissociation (CAD) in a quadrupole ion trap (QIT). For each of the isomeric flavonoid diglycoside pairs, the rutinoside (with a 1–6 inter-saccharide linkage) requires a greater CAD energy and thus has a higher dissociation threshold than its neohesperidoside (with a 1–2 inter-saccharide linkage) isomer. Likewise, the threshold energies of complexes containing flavones are higher than those containing flavanones. The monoglycoside isomers also have characteristic threshold energies. The flavonoids that are glycosylated at the 3-O- position tend to have lower threshold energies than those glycosylated at the 7-O- or 4′-O- position, and those that are C- bonded have lower threshold energies than the O- bonded isomers. The structural features that substantially influence the threshold energies include the aglycon type (flavanone versus flavone), the type of disaccharide (rutinose versus neohesperidose), and the linkage type (O- bonded versus C- bonded). Various computational means were applied to probe the structures and conformations of the complexes and to rationalize the differences in threshold energies of isomeric flavonoids. The most favorable coordination geometry of the complexes has a plane-angle of about 62°, which means that the deprotonated flavonoid and 2,2′-bipyridine within a complex do not reside on the same plane. Stable conformations of five cobalt complexes and five deprotonated flavonoids were identified. The conformations were combined with the point charges and helium accessible surface areas to explain qualitatively the differences in threshold energies for isomeric flavonoids

    Effects of functional group interactions on the bimolecular and dissociation reactions of diols

    Get PDF
    AbstractThe influence of functional group interactions on the bimolecular and dissociation reactions of diols were examined in a quadrupole ion trap mass spectrometer. Reactions of dimethyl ether ions with diols resulted in formation of (M + H)+ ions and (M + 13)+ ions (by net methyne additin). The product distribution depended on the relative separation of the hydroxyl groups within each diol, with the more proximate diols producing the greatest abundance of (M + 13)+ ions compared to (M + H)+ ions. The enhancement of the formation of (M + 13)+ ions is attributed to the capability for electrostatic interactions between the hydroxyl groups and the electropositive methylene group of the methoxymethylene reagent ion. The enhancement is most significant for diols that can adopt five- or to a lesser extent six-membered ring transition states (i.e., any 1,2 or 1,3 diol). Collision-activated dissociation (CAD) techniques, including both sequential activation experiments (MSn) and comparison of CAD spectra for model compounds, suggest that the (M + 13)+ ions are protonated cyclic diethers

    Photodissociation of Non-Covalent Peptide-Crown Ether Complexes

    Get PDF
    Highly chromogenic 18-crown-6-dipyrrolylquinoxaline coordinates primary amines of peptides, forming non-covalent complexes that can be transferred to the gas-phase by electrospray ionization. The appended chromogenic crown ether facilitates efficient energy transfer to the peptide upon ultraviolet irradiation in the gas phase, resulting in diagnostic peptide fragmentation. Collisional-activated dissociation and infrared multiphoton dissociation of these non-covalent complexes result only in their disassembly with the charge retained on either the peptide or crown ether, yielding no sequence ions. Upon UV photon absorption the intermolecular energy transfer is facilitated by the fast activation timescale of ultraviolet photodissociation (<10 ns) and by the collectively strong hydrogen bonding between the crown ether and peptide, thus allowing effective transfer of energy to the peptide moiety before disruption of the intermolecular hydrogen bonds

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules
    corecore