21 research outputs found

    Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING

    Get PDF
    Recognition of DNA viruses, such as cytomegaloviruses (CMVs), through pattern-recognition receptor (PRR) pathways involving MyD88 or STING constitute a first-line defense against infections mainly through production of type I interferon (IFN-I). However, the role of these pathways in different tissues is incompletely understood, an issue particularly relevant to the CMVs which have broad tissue tropisms. Herein, we contrasted anti-viral effects of MyD88 versus STING in distinct cell types that are infected with murine CMV (MCMV). Bone marrow chimeras revealed STING-mediated MCMV control in hematological cells, similar to MyD88. However, unlike MyD88, STING also contributed to viral control in non-hematological, stromal cells. Infected splenic stromal cells produced IFN-I in a cGAS-STING-dependent and MyD88-independent manner, while we confirmed plasmacytoid dendritic cell IFN-I had inverse requirements. MCMV-induced natural killer cytotoxicity was dependent on MyD88 and STING. Thus, MyD88 and STING contribute to MCMV control in distinct cell types that initiate downstream immune responses

    A murine herpesvirus closely related to ubiquitous human herpesviruses causes T-cell depletion

    Get PDF
    ABSTRACT The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4 + T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7. IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties. </jats:p

    Inducible down-regulation of MHC class I results in natural killer cell tolerance

    Get PDF
    Natural killer (NK) cells are innate lymphocytes that are thought to kill cells that down-regulate MHC class I (MHC-I) through missing-self recognition. NK cells fro

    Ischemic Neurons Recruit Natural Killer Cells That Accelerate Brain Infarction

    No full text
    Brain ischemia and reperfusion activate the immune system. The abrupt development of brain ischemic lesions suggests that innate immune cells may shape the outcome of stroke. Natural killer (NK) cells are innate lymphocytes that can be swiftly mobilized during the earliest phases of immune responses, but their role during stroke remains unknown. Herein, we found that NK cells infiltrated the ischemic lesions of the human brain. In a mouse model of cerebral ischemia, ischemic neuron-derived fractalkine recruited NK cells, which subsequently determined the size of brain lesions in a T and B cell-independent manner. NK cell-mediated exacerbation of brain infarction occurred rapidly after ischemia via the disruption of NK cell tolerance, augmenting local inflammation and neuronal hyperactivity. Therefore, NK cells catalyzed neuronal death in the ischemic brain

    Arrested natural killer cell development associated with transgene insertion into the Atf2 locus

    No full text
    Natural killer (NK) cell development in the bone marrow is not fully understood. Following lineage commitment, these cells appear to advance through a series of developmental stages that are beginning to be characterized. We previously reported a selective deficiency of NK cells in a C57BL/6 mouse with a transgenic construct consisting of the cDNA for the Ly49A major histocompatibility complex (MHC) class 1–specific inhibitory receptor driven by the granzyme A gene. This mouse has few NK cells in peripheral tissues with relative preservation of other immune cells, including T and B cells. Herein we demonstrate that these mice have an accumulation of NK cells with an immature phenotype in the bone marrow, consistent with a block at a previously proposed stage in normal NK-cell development. The phenotype is associated with transgenic insertion into Atf2, the gene for the basic leucine zipper (bZIP) transcription factor family member ATF-2. Although analysis of Atf2-null NK cells shows no defect, the transgenic mice express abnormal truncated Atf2 transcripts that may mediate a repressor effect because ATF2 can heterodimerize with other bZIP molecules. The defect is cell intrinsic, suggesting that certain bZIP molecules play significant roles in NK-cell development

    Recognition of the nonclassical MHC class i molecule H2-M3 by the receptor Ly49A regulates the licensing and activation of NK cells

    No full text
    The development and function of natural killer (NK) cells is regulated by the interaction of inhibitory receptors of the Ly49 family with distinct peptide-laden major histocompatibility complex (MHC) class I molecules, although whether the Ly49 family is able bind to other MHC class I-like molecules is unclear. Here we found that the prototypic inhibitory receptor Ly49A bound the highly conserved nonclassical MHC class I molecule H2-M3 with an affinity similar to its affinity for H-2D d. The specific recognition of H2-M3 by Ly49A regulated the 'licensing' of NK cells and mediated 'missing-self' recognition of H2-M3-deficient bone marrow. Host peptide-H2-M3 was required for optimal NK cell activity against experimental metastases and carcinogenesis. Thus, nonclassical MHC class I molecules can act as cognate ligands for Ly49 molecules. Our results provide insight into the various mechanisms that lead to NK cell tolerance
    corecore