30 research outputs found

    Smart portable rehabilitation devices

    Get PDF
    BACKGROUND: The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). METHODS: In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. RESULTS: Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. CONCLUSION: Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved

    Installing oncofertility programs for common cancers in optimum resource settings (Repro-Can-OPEN Study Part II): a committee opinion

    Get PDF
    The main objective of Repro-Can-OPEN Study Part 2 is to learn more about oncofertility practices in optimum resource settings to provide a roadmap to establish oncofertility best practice models. As an extrapolation for oncofertility best practice models in optimum resource settings, we surveyed 25 leading and well-resourced oncofertility centers and institutions from the USA, Europe, Australia, and Japan. The survey included questions on the availability and degree of utilization of fertility preservation options in case of childhood cancer, breast cancer, and blood cancer. All surveyed centers responded to all questions. Responses and their calculated oncofertility scores showed three major characteristics of oncofertility practice in optimum resource settings: (1) strong utilization of sperm freezing, egg freezing, embryo freezing, ovarian tissue freezing, gonadal shielding, and fractionation of chemo- and radiotherapy; (2) promising utilization of GnRH analogs, oophoropexy, testicular tissue freezing, and oocyte in vitro maturation (IVM); and (3) rare utilization of neoadjuvant cytoprotective pharmacotherapy, artificial ovary, in vitro spermatogenesis, and stem cell reproductive technology as they are still in preclinical or early clinical research settings. Proper technical and ethical concerns should be considered when offering advanced and experimental oncofertility options to patients. Our Repro-Can-OPEN Study Part 2 proposed installing specific oncofertility programs for common cancers in optimum resource settings as an extrapolation for best practice models. This will provide efficient oncofertility edification and modeling to oncofertility teams and related healthcare providers around the globe and help them offer the best care possible to their patients

    Hydrogen evolution from water catalyzed by cobalt-mimochrome VI*a, a synthetic mini-protein

    No full text
    A synthetic enzyme is reported that electrocatalytically reduces protons to hydrogen (H2) in water near neutral pH under aerobic conditions. Cobalt mimochrome VI*a (CoMC6*a) is a mini-protein with a cobalt deuteroporphyrin active site within a scaffold of two synthetic peptides covalently bound to the porphyrin. Comparison of the activity of CoMC6*a to that of cobalt microperoxidase-11 (CoMP11-Ac), a cobalt porphyrin catalyst with a single “proximal” peptide and no organized secondary structure, reveals that CoMC6*a has significantly enhanced longevity, yielding a turnover number exceeding 230 000, in comparison to 25 000 for CoMP11-Ac. Furthermore, comparison of cyclic voltammograms of CoMC6*a and CoMP11-Ac indicates that the trifluoroethanol-induced folding of CoMC6*a lowers the overpotential for catalytic H2 evolution by up to 100 mV. These results demonstrate that even a minimal polypeptide matrix can enhance longevity and efficiency of a H2-evolution catalyst

    Progressive Metaplastic and Dysplastic Changes in Mouse Pancreas Induced by Cyclooxygenase-2 Overexpression1

    Get PDF
    Cyclooxygenase-2 (COX-2) overexpression is an established factor linking chronic inflammation with metaplastic and neoplastic change in various tissues. We generated transgenic mice (BK5.COX-2) in which elevation of COX-2 and its effectors trigger a metaplasia-dysplasia sequence in exocrine pancreas. Histologic evaluation revealed a chronic pancreatitis-like state characterized by acinar-to-ductal metaplasia and a well-vascularized fibroinflammatory stroma that develops by 3 months. By 6 to 8 months, strongly dysplastic features suggestive of pancreatic ductal adenocarcinoma emerge in the metaplastic ducts. Increased proliferation, cellular atypia, and loss of normal cell/tissue organization are typical features in transgenic pancreata. Alterations in biomarkers associated with human inflammatory and neoplastic pancreatic disease were detected using immunohistochemistry. The abnormal pancreatic phenotype can be completely prevented by maintaining mice on a diet containing celecoxib, a well-characterized COX-2 inhibitor. Despite the high degree of atypia, only limited evidence of invasion to adjacent tissues was observed, with no evidence of distant metastases. However, cell lines derived from spontaneous lesions are aggressively tumorigenic when injected into syngeneic or nude mice. The progressive nature of the metaplastic/dysplastic changes observed in this model make it a valuable tool for examining the transition from chronic inflammation to neoplasia
    corecore