8 research outputs found

    Response to Keating and Rossell

    Full text link

    Localized Brain Volume and White Matter Integrity Alterations in Adolescent Anorexia Nervosa

    Full text link
    OBJECTIVE: The neurobiological underpinnings of anorexia nervosa (AN) are poorly understood. In this study we tested whether brain gray matter (GM) and white matter (WM) in adolescents with AN would show alterations comparable to adults. METHOD: We used magnetic resonance imaging to study GM and WM volume, and diffusion tensor imaging to assess fractional anisotropy for WM integrity in 19 adolescents with AN and 22 controls. RESULTS: Individuals with AN showed greater left orbitofrontal, right insular, and bilateral temporal cortex GM, as well as temporal lobe WM volumes compared to controls. WM integrity in adolescents with AN was lower (lower fractional anisotropy) in fornix, posterior frontal, and parietal areas, but higher in anterior frontal, orbitofrontal, and temporal lobes. In individuals with AN, orbitofrontal GM volume correlated negatively with sweet taste pleasantness. An additional comparison of this study cohort with adult individuals with AN and healthy controls supported greater orbitofrontal cortex and insula volumes in AN across age groups. CONCLUSIONS: This study indicates larger orbitofrontal and insular GM volumes, as well as lower fornix WM integrity in adolescents with AN, similar to adults. The pattern of larger anteroventral GM and WM volume as well as WM integrity, but lower WM integrity in posterior frontal and parietal regions may indicate that developmental factors such as GM pruning and WM growth could contribute to brain alterations in AN. The negative correlation between taste pleasantness and orbitofrontal cortex volume in individuals with AN could contribute to food avoidance in this disorder

    Research diagnostic criteria for Alzheimer’s disease: findings from the LipiDiDiet randomized controlled trial

    Full text link
    Background: To explore the utility of the International Working Group (IWG)-1 criteria in recruitment for Alzheimer’s disease (AD) clinical trials, we applied the more recently proposed research diagnostic criteria to individuals enrolled in a randomized controlled prevention trial (RCT) and assessed their disease progression. Methods: The multinational LipiDiDiet RCT targeted 311 individuals with IWG-1 defined prodromal AD. Based on centrally analyzed baseline biomarkers, participants were classified according to the IWG-2 and National Institute on Aging–Alzheimer’s Association (NIA-AA) 2011 and 2018 criteria. Linear mixed models were used to investigate the 2-year change in cognitive and functional performance (Neuropsychological Test Battery NTB Z scores, Clinical Dementia Rating-Sum of Boxes CDR-SB) (criteria × time interactions; baseline score, randomization group, sex, Mini-Mental State Examination (MMSE), and age also included in the models). Cox models adjusted for randomization group, MMSE, sex, age, and study site were used to investigate the risk of progression to dementia over 2 years. Results: In total, 88%, 86%, and 69% of participants had abnormal cerebrospinal fluid (CSF) β-amyloid, total tau, and phosphorylated tau, respectively; 64% had an A+T+N+ profile (CSF available for N = 107). Cognitive-functional decline appeared to be more pronounced in the IWG-2 prodromal AD, NIA-AA 2011 high and intermediate AD likelihood, and NIA-AA 2018 AD groups, but few significant differences were observed between the groups within each set of criteria. Hazard ratio (95% CI) for dementia was 4.6 (1.6–13.7) for IWG-2 prodromal AD (reference group no prodromal AD), 7.4 (1.0–54.7) for NIA-AA 2011 high AD likelihood (reference group suspected non-AD pathology SNAP), and 9.4 (1.2–72.7) for NIA-AA 2018 AD (reference group non-Alzheimer’s pathologic change). Compared with the NIA-AA 2011 high AD likelihood group (abnormal β-amyloid and neuronal injury markers), disease progression was similar in the intermediate AD likelihood group (medial temporal lobe atrophy; no CSF available). Conclusions: Despite being less restrictive than the other criteria, the IWG-1 criteria reliably identified individuals with AD pathology. More pragmatic and easily applicable selection criteria might be preferred due to feasibility in certain situations, e.g., in multidomain prevention trials that do not specifically target β-amyloid/tau pathologies. Trial registration: Netherlands Trial Register, NL1620. Registered on 9 March 2009
    corecore