274 research outputs found
The appendage role of insect disco genes and possible implications on the evolution of the maggot larval form
AbstractThough initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva
Current and Emerging Pharmacotherapies for the Treatment of Relapsed Small Cell Lung Cancer
Small cell lung cancer (SCLC) is a very aggressive cancer with poor outcome if left untreated, but it is also one of the most chemotherapy responsive cancers. Overall it has a very poor prognosis especially if it is chemotherapy resistant to first line treatment. Second line chemotherapy has not been very beneficial in SCLC as opposed to breast cancer and lymphoma. In the last few years topotecan is the only drug that has been approved by the food and drug administration (FDA) for the second line treatment of SCLC but in Japan another drug, amrubicin is approved. There are many combinations of different chemotherapies available in moderate to high intensity, in this difficult to treat patient to overcome the chemo resistance, but many of these studies are small or phase II trials. In this article we have reviewed single agent and multidrug regimens that were studied in both chemo sensitive and refractory setting, including the most recent clinical trials
Alternative splicing of coq-2 controls the levels of rhodoquinone in animals
Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.Agencia Nacional de Investigación e InnovaciónCanadian Institutes of Health Researc
Alternative splicing of coq-2 controls the levels of rhodoquinone in animals
Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.Agencia Nacional de Investigación e InnovaciónCanadian Institutes of Health Researc
Binary orbits as the driver of γ-ray emission and mass ejection in classical novae
Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel �10,000 solar masses of material at velocities exceeding 1,000 km/s. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of the thermonuclear runaway, prolonged optically thick winds, or binary interaction with the nova envelope. Classical novae are now routinely detected in GeV gamma-rays, suggesting that relativistic particles are accelerated by strong shocks in nova ejecta. Here we present high-resolution imaging of the gamma-ray-emitting nova V959 Mon at radio wavelengths, showing that its ejecta were shaped by binary motion: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters
A Symbiotic Supramolecular Approach to the Design of Novel Amphiphiles with Antibacterial Properties Against MSRA
Herein, we identify Supramolecular Self-associating Amphiphiles (SSAs) as a novel class of antibacterials with activity towards Methicillin-resistant Staphylococcus aureus. Structure-activity relationships have been identified in the solid, solution and gas phases. Finally, we show that when supplied in combination, SSAs exhibit increased antibacterial efficacy against these clinically relevant microbes
A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in Streptococcus pneumoniae
Survival in the human host requires bacteria to respond to unfavorable conditions. In the important Gram-positive pathogen Streptococcus pneumoniae, cell wall biosynthesis proteins MurM and MurN are tRNA-dependent amino acyl transferases which lead to the production of branched muropeptides. We demonstrate that wild-type cells experience optimal growth under mildly acidic stressed conditions, but ΔmurMN strain displays growth arrest and extensive lysis. Furthermore, these stress conditions compromise the efficiency with which alanyl-tRNAAla synthetase can avoid noncognate mischarging of tRNAAla with serine, which is toxic to cells. The observed growth defects are rescued by inhibition of the stringent response pathway or by overexpression of the editing domain of alanyl-tRNAAla synthetase that enables detoxification of tRNA misacylation. Furthermore, MurM can incorporate seryl groups from mischarged Seryl-tRNAAlaUGC into cell wall precursors with exquisite specificity. We conclude that MurM contributes to the fidelity of translation control and modulates the stress response by decreasing the pool of mischarged tRNAs. Finally, we show that enhanced lysis of ΔmurMN pneumococci is caused by LytA, and the murMN operon influences macrophage phagocytosis in a LytA-dependent manner. Thus, MurMN attenuates stress responses with consequences for host–pathogen interactions. Our data suggest a causal link between misaminoacylated tRNA accumulation and activation of the stringent response. In order to prevent potential corruption of translation, consumption of seryl-tRNAAla by MurM may represent a first line of defense. When this mechanism is overwhelmed or absent (ΔmurMN), the stringent response shuts down translation to avoid toxic generation of mistranslated/misfolded protein
A Phase 1 trial of human telomerase reverse transcriptase (hTERT) vaccination combined with therapeutic strategies to control immune-suppressor mechanisms
The presence of inhibitory immune cells and difficulty in generating activated effector T-cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T-cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T-cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T-cells with effector phenotypes. The in vitro re-challenge of T-cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T-cells with specificity for hTERT. However, a population of exhausted PD-1 + cytotoxic T-cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T-cell population
Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open-label, blinded-endpoint trial
BACKGROUND: Allopurinol is a urate-lowering therapy used to treat patients with gout. Previous studies have shown that allopurinol has positive effects on several cardiovascular parameters. The ALL-HEART study aimed to determine whether allopurinol therapy improves major cardiovascular outcomes in patients with ischaemic heart disease. METHODS: ALL-HEART was a multicentre, prospective, randomised, open-label, blinded-endpoint trial done in 18 regional centres in England and Scotland, with patients recruited from 424 primary care practices. Eligible patients were aged 60 years or older, with ischaemic heart disease but no history of gout. Participants were randomly assigned (1:1), using a central web-based randomisation system accessed via a web-based application or an interactive voice response system, to receive oral allopurinol up-titrated to a dose of 600 mg daily (300 mg daily in participants with moderate renal impairment at baseline) or to continue usual care. The primary outcome was the composite cardiovascular endpoint of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death. The hazard ratio (allopurinol vs usual care) in a Cox proportional hazards model was assessed for superiority in a modified intention-to-treat analysis (excluding randomly assigned patients later found to have met one of the exclusion criteria). The safety analysis population included all patients in the modified intention-to-treat usual care group and those who took at least one dose of randomised medication in the allopurinol group. This study is registered with the EU Clinical Trials Register, EudraCT 2013-003559-39, and ISRCTN, ISRCTN32017426. FINDINGS: Between Feb 7, 2014, and Oct 2, 2017, 5937 participants were enrolled and then randomly assigned to receive allopurinol or usual care. After exclusion of 216 patients after randomisation, 5721 participants (mean age 72·0 years [SD 6·8], 4321 [75·5%] males, and 5676 [99·2%] white) were included in the modified intention-to-treat population, with 2853 in the allopurinol group and 2868 in the usual care group. Mean follow-up time in the study was 4·8 years (1·5). There was no evidence of a difference between the randomised treatment groups in the rates of the primary endpoint. 314 (11·0%) participants in the allopurinol group (2·47 events per 100 patient-years) and 325 (11·3%) in the usual care group (2·37 events per 100 patient-years) had a primary endpoint (hazard ratio [HR] 1·04 [95% CI 0·89–1·21], p=0·65). 288 (10·1%) participants in the allopurinol group and 303 (10·6%) participants in the usual care group died from any cause (HR 1·02 [95% CI 0·87–1·20], p=0·77). INTERPRETATION: In this large, randomised clinical trial in patients aged 60 years or older with ischaemic heart disease but no history of gout, there was no difference in the primary outcome of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death between participants randomised to allopurinol therapy and those randomised to usual care. FUNDING:
UK National Institute for Health and Care Research
- …