160 research outputs found

    The Solar Neighborhood. XXXX. Parallax Results from the CTIOPI 0.9 m Program: New Young Stars Near the Sun

    Get PDF
    As a step toward completing and characterizing the census of the solar neighborhood, we present astrometric, photometric, and spectroscopic observations of 32 systems observed with the Cerro Tololo Inter-American Observatory 0.9 m and 1.5 m telescopes. Astrometry from the 0.9 m indicates that among the 17 systems that had no previous published trigonometric parallaxes, 14 are within 25 pc. In the full sample, nine systems have proper motions larger than 0.”5 yr^(−1), including 2MASS J02511490-0352459, which exceeds 2.”0 yr^(−1). VRI photometry from the 0.9 m and optical spectra from the 1.5 m indicate that the targets have V = 11–22 mag and spectral types M3.0V–L3.0V. For 2MASS J23062928-0502285 (TRAPPIST-1), we present updated astrometry and photometric variability based on over 12 years of observations. Of the nine binaries in the sample, two promise mass determinations in the next decade: LHS 6167AB, an M4.5V system for which we present an accurate parallax placing the binary at 9.7 pc, and 2MASS J23515048-2537367AB, an M8.5V system at 21.1 pc for which we present the first evidence of an unseen, low-mass companion. Most importantly, Na I and K I gravity indicators, Hα measurements, long-term photometric variability, locations on the H-R diagram, and kinematic assessments indicate that as many as 13 of the systems are young, including candidate members of young moving groups, with ages less than ~120 Myr

    HST/WFC3 Light Curve Confirms the Closest Exoplanet to Transit an M Dwarf is Terrestrial

    Full text link
    Previous studies of the exoplanet LTT 1445Ac concluded that the light curve from the Transiting Exoplanet Survey Satellite (TESS) was consistent with both grazing and non-grazing geometries. As a result, the radius and hence density of the planet remained unknown. To resolve this ambiguity, we observed the LTT 1445 system for six spacecraft orbits of the Hubble Space Telescope (HST) using WFC3/UVIS imaging in spatial scan mode, including one partial transit of LTT 1445Ac. This imaging produces resolved light curves of each of the three stars in the LTT 1445 system. We confirm that the planet transits LTT 1445A and that LTT 1445C is the source of the rotational modulation seen in the TESS light curve, and we refine the estimate of the dilution factor for the TESS data. We perform a joint fit to the TESS and HST observations, finding that the transit of LTT 1445Ac is not grazing with 97% confidence. We measure a planetary radius of 1.10−0.07+0.10_{-0.07}^{+0.10} R⊕_\oplus. Combined with previous radial velocity observations, our analysis yields a planetary mass of 1.36±0.191.36\pm0.19 M⊕_\oplus and a planetary density of 5.6−1.5+1.7_{-1.5}^{+1.7} g cm−3^{-3}. LTT 1445Ac is an Earth analog with respect to its mass and radius, albeit with a higher instellation, and is therefore an exciting target for future atmospheric studies.Comment: Submitted to AJ. 9 pages, 7 figures, 3 table

    Mid-to-Late M Dwarfs Lack Jupiter Analogs

    Full text link
    Cold Jovian planets play an important role in sculpting the dynamical environment in which inner terrestrial planets form. The core accretion model predicts that giant planets cannot form around low-mass M dwarfs, although this idea has been challenged by recent planet discoveries. Here, we investigate the occurrence rate of giant planets around low-mass (0.1-0.3M⊙_\odot) M dwarfs. We monitor a volume-complete, inactive sample of 200 such stars located within 15 parsecs, collecting four high-resolution spectra of each M dwarf over six years and performing intensive follow-up monitoring of two candidate radial-velocity variables. We use TRES on the 1.5 m telescope at the Fred Lawrence Whipple Observatory and CHIRON on the Cerro Tololo Inter-American Observatory 1.5 m telescope for our primary campaign, and MAROON-X on Gemini North for high-precision follow-up. We place a 95%-confidence upper limit of 1.5% (68%-confidence limit of 0.57%) on the occurrence of MPM_{\rm P}sini>i > 1MJ_{\rm J} giant planets out to the water snow line and provide additional constraints on the giant planet population as a function of MPM_{\rm P}sinii and period. Beyond the snow line (100100 K <Teq<150< T_{\rm eq} < 150 K), we place 95%-confidence upper limits of 1.5%, 1.7%, and 4.4% (68%-confidence limits of 0.58%, 0.66%, and 1.7%) for 3MJ<MP_{\rm J} < M_{\rm P}sini<10i < 10MJ_{\rm J}, 0.8MJ<MP_{\rm J} < M_{\rm P}sini<3i < 3MJ_{\rm J}, and 0.3MJ<MP_{\rm J} < M_{\rm P}sini<0.8i < 0.8MJ_{\rm J} giant planets; i.e., Jupiter analogs are rare around low-mass M dwarfs. In contrast, surveys of Sun-like stars have found that their giant planets are most common at these Jupiter-like instellations.Comment: Accepted for publication in AJ; 19 pages, 5 figures, 2 table

    LHS 1610A: A Nearby Mid-M Dwarf with a Companion That is Likely A Brown Dwarf

    Full text link
    We present the spectroscopic orbit of LHS 1610A, a newly discovered single-lined spectroscopic binary with a trigonometric distance placing it at 9.9 pm 0.2 pc. We obtained spectra with the TRES instrument on the 1.5m Tillinghast Reflector at the Fred Lawrence Whipple Observatory located on Mt. Hopkins in AZ. We demonstrate the use of the TiO molecular bands at 7065 -- 7165 Angstroms to measure radial velocities and achieve an average estimated velocity uncertainty of 28 m/s. We measure the orbital period to be 10.6 days and calculate a minimum mass of 44.8 pm 3.2 Jupiter masses for the secondary, indicating that it is likely a brown dwarf. We place an upper limit to 3 sigma of 2500 K on the effective temperature of the companion from infrared spectroscopic observations using IGRINS on the 4.3m Discovery Channel Telescope. In addition, we present a new photometric rotation period of 84.3 days for the primary star using data from the MEarth-South Observatory, with which we show that the system does not eclipse.Comment: 10 pages, 5 figures; accepted for publication in the Astronomical Journa

    Exercise recommendations for people with bone metastases: Expert consensus for healthcare providers and clinical exercise professionals

    Get PDF
    Purpose: Exercise has been underutilized in people with advanced or incurable cancer despite the potential to improve physical function and reduce psychosocial morbidity, especially for people with bone metastases because of concerns over skeletal complications. The International Bone Metastases Exercise Working Group (IBMEWG) was formed to develop best practice recommendations for exercise programming for people with bone metastases on the basis of published research, clinical experience, and expert opinion. Methods: The IBMEWG undertook sequential steps to inform the recommendations: (1) modified Delphi survey, (2) systematic review, (3) cross-sectional survey to physicians and nurse practitioners, (4) in-person meeting of IBMEWG to review evidence from steps 1-3 to develop draft recommendations, and (5) stakeholder engagement. Results: Recommendations emerged from the contributing evidence and IBMEWG discussion for pre-exercise screening, exercise testing, exercise prescription, and monitoring of exercise response. Identification of individuals who are potentially at higher risk of exercise-related skeletal complication is a complex interplay of these factors: (1) lesion-related, (2) cancer and cancer treatment–related, and (3) the person-related. Exercise assessment and prescription requires consideration of the location and presentation of bone lesion(s) and should be delivered by qualified exercise professionals with oncology education and exercise prescription experience. Emphasis on postural alignment, controlled movement, and proper technique is essential. Conclusion: Ultimately, the perceived risk of skeletal complications should be weighed against potential health benefits on the basis of consultation between the person, health care team, and exercise professionals. These recommendations provide an initial framework to improve the integration of exercise programming into clinical care for people with bone metastases

    The Solar Neighborhood. XXXX. Parallax Results from the CTIOPI 0.9 m Program: New Young Stars Near the Sun

    Get PDF
    As a step toward completing and characterizing the census of the solar neighborhood, we present astrometric, photometric, and spectroscopic observations of 32 systems observed with the Cerro Tololo Inter-American Observatory 0.9 m and 1.5 m telescopes. Astrometry from the 0.9 m indicates that among the 17 systems that had no previous published trigonometric parallaxes, 14 are within 25 pc. In the full sample, nine systems have proper motions larger than 0.”5 yr^(−1), including 2MASS J02511490-0352459, which exceeds 2.”0 yr^(−1). VRI photometry from the 0.9 m and optical spectra from the 1.5 m indicate that the targets have V = 11–22 mag and spectral types M3.0V–L3.0V. For 2MASS J23062928-0502285 (TRAPPIST-1), we present updated astrometry and photometric variability based on over 12 years of observations. Of the nine binaries in the sample, two promise mass determinations in the next decade: LHS 6167AB, an M4.5V system for which we present an accurate parallax placing the binary at 9.7 pc, and 2MASS J23515048-2537367AB, an M8.5V system at 21.1 pc for which we present the first evidence of an unseen, low-mass companion. Most importantly, Na I and K I gravity indicators, Hα measurements, long-term photometric variability, locations on the H-R diagram, and kinematic assessments indicate that as many as 13 of the systems are young, including candidate members of young moving groups, with ages less than ~120 Myr

    TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844

    Full text link
    Data from the newly-commissioned \textit{Transiting Exoplanet Survey Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of 1.32±0.021.32\pm 0.02 R⊕R_\oplus and orbits the star every 11 hours. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough (I=11.9I=11.9, K=9.1K=9.1) for this possibility to be investigated with transit and occultation spectroscopy. The star's brightness and the planet's short period will also facilitate the measurement of the planet's mass through Doppler spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use of the TESS Alert data, which is currently in a beta test phase, using data from the pipelines at the TESS Science Office and at the TESS Science Processing Operations Cente
    • 

    corecore