14 research outputs found

    Hospital-onset clostridium difficile infection rates in persons with cancer or Hematopoietic stem cell transplant: A C3IC network report

    Get PDF
    A multicenter survey of 11 cancer centers was performed to determine the rate of hospital-onset Clostridium difficile infection (HO-CDI) and surveillance practices. Pooled rates of HO-CDI in patients with cancer were twice the rates reported for all US patients (15.8 vs 7.4 per 10,000 patient-days). Rates were elevated regardless of diagnostic test used

    Potentially Pathogenic Bacteria in Shower Water and Air of a Stem Cell Transplant Unitâ–¿

    Get PDF
    Potential pathogens from shower water and aerosolized shower mist (i.e., shower aerosol) have been suggested as an environmental source of infection for immunocompromised patients. To quantify the microbial load in shower water and aerosol samples, we used culture, microscopic, and quantitative PCR methods to investigate four shower stalls in a stem cell transplant unit at Barnes-Jewish Hospital in St. Louis, MO. We also tested membrane-integrated showerheads as a possible mitigation strategy. In addition to quantification, a 16S rRNA gene sequencing survey was used to characterize the abundant bacterial populations within shower water and aerosols. The average total bacterial counts were 2.2 Ă— 107 cells/liter in shower water and 3.4 Ă— 104 cells/m3 in shower aerosol, and these counts were reduced to 6.3 Ă— 104 cells/liter (99.6% efficiency) and 8.9 Ă— 103 cells/m3 (82.4% efficiency), respectively, after membrane-integrated showerheads were installed. Potentially pathogenic organisms were found in both water and aerosol samples from the conventional showers. Most notable was the presence of Mycobacterium mucogenicum (99.5% identity) in the water and Pseudomonas aeruginosa (99.3% identity) in the aerosol samples. Membrane-integrated showerheads may protect immunocompromised patients from waterborne infections in a stem cell transplant unit because of efficient capture of vast numbers of potentially pathogenic bacteria from hospital water. However, an in-depth epidemiological study is necessary to investigate whether membrane-integrated showerheads reduce hospital-acquired infections. The microbial load in shower aerosols with conventional showerheads was elevated compared to the load in HEPA-filtered background air in the stem cell unit, but it was considerably lower than typical indoor air. Thus, in shower environments without HEPA filtration, the increase in microbial load due to shower water aerosolization would not have been distinguishable from anticipated variations in background levels
    corecore