28 research outputs found

    Study protocol: SPARCLE – a multi-centre European study of the relationship of environment to participation and quality of life in children with cerebral palsy

    Get PDF
    BACKGROUND: SPARCLE is a nine-centre European epidemiological research study examining the relationship of participation and quality of life to impairment and environment (physical, social and attitudinal) in 8–12 year old children with cerebral palsy. Concepts are adopted from the International Classification of Functioning, Disability and Health which bridges the medical and social models of disability. METHODS/DESIGN: A cross sectional study of children with cerebral palsy sampled from total population databases in 9 European regions. Children were visited by research associates in each country who had been trained together. The main instruments used were KIDSCREEN, Life-H, Strength and Difficulties Questionnaire, Parenting Stress Index. A measure of environment was developed within the study. All instruments were translated according to international guidelines. The potential for bias due to non response and missing data will be examined. After initial analysis using multivariate regression of how the data captured by each instrument relate to impairment and socio-economic characteristics, relationships between the latent traits captured by the instruments will then be analysed using structural equation modelling. DISCUSSION: This study is original in its methods by directly engaging children themselves, ensuring those with learning or communication difficulty are not excluded, and by studying in quantitative terms the crucial outcomes of participation and quality of life. Specification and publication of this protocol prior to analysis, which is not common in epidemiology but well established for randomised controlled trials and systematic reviews, should avoid the pitfalls of data dredging and post hoc analyses

    Clonality and α-a Recombination in the Australian Cryptococcus gattii VGII Population - An Emerging Outbreak in Australia

    Get PDF
    BACKGROUND: Cryptococcus gattii is a basidiomycetous yeast that causes life-threatening disease in humans and animals. Within C. gattii, four molecular types are recognized (VGI to VGIV). The Australian VGII population has been in the spotlight since 2005, when it was suggested as the possible origin for the ongoing outbreak at Vancouver Island (British Columbia, Canada), with same-sex mating being suggested as the driving force behind the emergence of this outbreak, and is nowadays hypothesized as a widespread phenomenon in C. gattii. However, an in-depth characterization of the Australian VGII population is still lacking. The present work aimed to define the genetic variability within the Australian VGII population and determine processes shaping its population structure. METHODOLOGY/PRINCIPAL FINDINGS: A total of 54 clinical, veterinary and environmental VGII isolates from different parts of the Australian continent were studied. To place the Australian population in a global context, 17 isolates from North America, Europe, Asia and South America were included. Genetic variability was assessed using the newly adopted international consensus multi-locus sequence typing (MLST) scheme, including seven genetic loci: CAP59, GPD1, LAC1, PLB1, SOD1, URA5 and IGS1. Despite the overall clonality observed, the presence of MATa VGII isolates in Australia was demonstrated for the first time in association with recombination in MATα-MATa populations. Our results also support the hypothesis of a "smouldering" outbreak throughout the Australian continent, involving a limited number of VGII genotypes, which is possibly caused by a founder effect followed by a clonal expansion. CONCLUSIONS/SIGNIFICANCE: The detection of sexual recombination in MATα-MATa population in Australia is in accordance with the natural life cycle of C. gattii involving opposite mating types and presents an alternative to the same-sex mating strategy suggested elsewhere. The potential for an Australian wide outbreak highlights the crucial issue to develop active surveillance procedures.Fabian Carriconde, Félix Gilgado, Ian Arthur, David Ellis, Richard Malik, Nathalie van de Wiele, Vincent Robert, Bart J. Currie, Wieland Meye

    How sulphate-reducing microorganisms cope with stress: lessons from systems biology

    Get PDF
    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery

    Excess capacity and efficiency in the quota managed Tasmanian Rock Lobster Fishery

    No full text
    Excess capacity is a major concern for fisheries management worldwide. It is often argued that Individual Transferable Quota (ITQ) systems will enhance efficiency and alleviate problems of excess capacity. While improvements in efficiency have been observed, most empirical studies have found only modest changes in excess capacity as a result of such systems. Using a database of compulsory log-book information for the Tasmanian Rock Lobster Fishery in Australia, from January 2000 to December 2013, this study presents the first analysis to investigate the dynamic behaviour of both excess capacity and efficiency (i.e. technical and scale efficiency) in an industrialised fleet after the introduction of quota management. The analysis revealed weak evidence for a prolonged adjustment in the fishery following the introduction of an ITQ system. In addition, no marked changes in excess capacity were observed over the study period; and furthermore, there was no evidence for an increase in excess capacity during a period of non-binding Total Allowable Catch (TAC) when race to fish behaviour increased in the fishery. The results suggest a limited ability of the ITQ system to alleviate levels of excess capacity in fisheries in the long-term
    corecore