439 research outputs found
The use of 35S and Tnos expression elements in the measurement of genetically engineered plant materials
An online survey was conducted by the International Life Sciences Institute, Food Biotechnology Committee, on the use of qualitative and quantitative polymerase chain reaction (PCR) assays for cauliflower mosaic virus 35S promoter and Agrobacterium tumefaciens Tnos DNA sequence elements for the detection of genetically engineered (GE) crop plant material. Forty-four testing laboratories around the world completed the survey. The results showed the widespread use of such methods, the multiplicity of published and in-house methods, and the variety of reference materials and calibrants in use. There was an interest on the part of respondents in validated quantitative assays relevant to all GE events that contain these two genetic elements. Data are presented by testing two variations each of five published real-time quantitative PCR methods for 35S detection on eight maize reference materials. The results showed that two of the five methods were not suitable for all the eight reference materials, with poor linear regression parameters and multiple PCR amplification products for some of the reference materials. This study demonstrates that not all 35S methods produce satisfactory results, emphasizing the need for method validation
The Kepler Pixel Response Function
Kepler seeks to detect sequences of transits of Earth-size exoplanets
orbiting Solar-like stars. Such transit signals are on the order of 100 ppm.
The high photometric precision demanded by Kepler requires detailed knowledge
of how the Kepler pixels respond to starlight during a nominal observation.
This information is provided by the Kepler pixel response function (PRF),
defined as the composite of Kepler's optical point spread function, integrated
spacecraft pointing jitter during a nominal cadence and other systematic
effects. To provide sub-pixel resolution, the PRF is represented as a
piecewise-continuous polynomial on a sub-pixel mesh. This continuous
representation allows the prediction of a star's flux value on any pixel given
the star's pixel position. The advantages and difficulties of this polynomial
representation are discussed, including characterization of spatial variation
in the PRF and the smoothing of discontinuities between sub-pixel polynomial
patches. On-orbit super-resolution measurements of the PRF across the Kepler
field of view are described. Two uses of the PRF are presented: the selection
of pixels for each star that maximizes the photometric signal to noise ratio
for that star, and PRF-fitted centroids which provide robust and accurate
stellar positions on the CCD, primarily used for attitude and plate scale
tracking. Good knowledge of the PRF has been a critical component for the
successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for
publication
Kepler Mission Stellar and Instrument Noise Properties
Kepler Mission results are rapidly contributing to fundamentally new
discoveries in both the exoplanet and asteroseismology fields. The data
returned from Kepler are unique in terms of the number of stars observed,
precision of photometry for time series observations, and the temporal extent
of high duty cycle observations. As the first mission to provide extensive time
series measurements on thousands of stars over months to years at a level
hitherto possible only for the Sun, the results from Kepler will vastly
increase our knowledge of stellar variability for quiet solar-type stars. Here
we report on the stellar noise inferred on the timescale of a few hours of most
interest for detection of exoplanets via transits. By design the data from
moderately bright Kepler stars are expected to have roughly comparable levels
of noise intrinsic to the stars and arising from a combination of fundamental
limitations such as Poisson statistics and any instrument noise. The noise
levels attained by Kepler on-orbit exceed by some 50% the target levels for
solar-type, quiet stars. We provide a decomposition of observed noise for an
ensemble of 12th magnitude stars arising from fundamental terms (Poisson and
readout noise), added noise due to the instrument and that intrinsic to the
stars. The largest factor in the modestly higher than anticipated noise follows
from intrinsic stellar noise. We show that using stellar parameters from
galactic stellar synthesis models, and projections to stellar rotation,
activity and hence noise levels reproduces the primary intrinsic stellar noise
features.Comment: Accepted by ApJ; 26 pages, 20 figure
Recommended from our members
Kepler-4B: A Hot Neptune-Like Planet of A G0 Star Near Main-Sequence Turnoff
Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19(h)02(m)27.(s)68, delta = +50 degrees 08'08 '' 7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 x 10(-3) and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3(-1.9)(+1.1) m s(-1), consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223(-0.091)(+0.053) M(circle dot) and 1.487(-0.084)(+0.071) R(circle dot).We estimate the planet mass and radius to be {M(P), R(P)} = {24.5 +/- 3.8 M(circle plus), 3.99 +/- 0.21 R(circle plus)}. The planet's density is near 1.9 g cm(-3); it is thus slightly denser and more massive than Neptune, but about the same size.W. M. Keck FoundationNASA's Science Mission DirectorateAstronom
Kepler-7b: A Transiting Planet with Unusually Low Density
We report the discovery and confirmation of Kepler-7b, a transiting planet
with unusually low density. The mass is less than half that of Jupiter, Mp =
0.43 Mj, but the radius is fifty percent larger, Rp = 1.48 Rj. The resulting
density, 0.17 g/cc, is the second lowest reported so far for an extrasolar
planet. The orbital period is fairly long, P = 4.886 days, and the host star is
not much hotter than the Sun, Teff = 6000 K. However, it is more massive and
considerably larger than the sun, Mstar = 1.35 Msun and Rstar = 1.84 Rsun, and
must be near the end of its life on the Main Sequence.Comment: 19 pages, 3 figure
Kepler Observations of Transiting Hot Compact Objects
Kepler photometry has revealed two unusual transiting companions orbiting an
early A-star and a late B-star. In both cases the occultation of the companion
is deeper than the transit. The occultation and transit with follow-up optical
spectroscopy reveal a 9400 K early A-star, KOI-74 (KIC 6889235), with a
companion in a 5.2 day orbit with a radius of 0.08 Rsun and a 10000 K late
B-star KOI-81 (KIC 8823868) that has a companion in a 24 day orbit with a
radius of 0.2 Rsun. We infer a temperature of 12250 K for KOI-74b and 13500 K
for KOI-81b.
We present 43 days of high duty cycle, 30 minute cadence photometry, with
models demonstrating the intriguing properties of these object, and speculate
on their nature.Comment: 12 pages, 3 figures, submitted to ApJL (updated to correct KOI74
lightcurve
A Transiting Hot Jupiter Orbiting a Metal-Rich Star
We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a
star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's
mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty
percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of
0.35 g/cc, a fairly typical value for such a planet. The orbital period is P =
3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun,
and larger than the Sun, Rstar = 1.39 Rsun.Comment: 12 pages, 2 figures, submitted to the Astrophysical Journal Letter
Characteristics of Kepler Planetary Candidates Based on the First Data Set: The Majority are Found to be Neptune-Size and Smaller
In the spring of 2009, the Kepler Mission commenced high-precision photometry
on nearly 156,000 stars to determine the frequency and characteristics of small
exoplanets, conduct a guest observer program, and obtain asteroseismic data on
a wide variety of stars. On 15 June 2010 the Kepler Mission released data from
the first quarter of observations. At the time of this publication, 706 stars
from this first data set have exoplanet candidates with sizes from as small as
that of the Earth to larger than that of Jupiter. Here we give the identity and
characteristics of 306 released stars with planetary candidates. Data for the
remaining 400 stars with planetary candidates will be released in February
2011. Over half the candidates on the released list have radii less than half
that of Jupiter. The released stars include five possible multi-planet systems.
One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with
near-resonant periods.Comment: Paper to accompany Kepler's June 15, 2010 data release; submitted to
Astrophysical Journal Figures 1,2,& 3 revised. Improved labeling on all
figures. Slight changes to planet frequencies in result
- …