12 research outputs found

    Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier, Washington State, USA, as Reconstructed From a 158‐m‐Long Ice Core

    Get PDF
    Light absorbing particles (LAPs) include black carbon (BC) and mineral dust and are of interest due to their positive radiative forcing and contribution to albedo reductions and snow and glacier melt. This study documents historic BC and dust deposition as well as their effect on albedo on South Cascade Glacier (SCG) in Washington State (USA) through the analysis of a 158‐m (139.5‐m water equivalent [w.e.]) ice core extracted in 1994 and spanning the period 1840–1991. Peak BC deposition occurred between 1940 and 1960, when median BC concentrations were 16 times higher than background, likely dominated by domestic coal and forest fire emissions. Post 1960 BC concentrations decrease, followed by an increase from 1977 to 1991 due to melt consolidation and higher emissions. Differences between the SCG record and BC emission inventories, as well as ice core records from other regions, highlight regional differences in the timing of anthropogenic and biomass BC emissions. Dust deposition on SCG is dominated by local sources and is variable throughout the record. Albedo reductions from LAP are dominated by dust deposition, except during high BC deposition events from forest fires and during 1940–1960 when BC and dust similarly contribute to albedo reductions. This study furthers understanding of the factors contributing to historical snowmelt and glacier retreat in the Cascades and demonstrates that ice cores retrieved from temperate glaciers have the potential to provide valuable records of LAP deposition

    Source apportionment of aerosols by 14C measurements in different carbonaceous particle fractions

    Get PDF
    From the 18th International Radiocarbon Conference held in Wellington, New Zealand, September 1-5, 2003.Radiocarbon enables a distinction between contemporary and fossil carbon, which can be used for the apportionment of biogenic and anthropogenic sources in environmental studies. In order to apply this approach to carbonaceous atmospheric aerosols, it is necessary to adapt pretreatment procedures to the requirements of 14C measurements. In this work, we followed an approach in which total carbon (TC) is subdivided into fractions of different chemical and physical properties. 14C data of ambient aerosols from Zrich (Switzerland) are presented for the 2 sub-fractions of TC, organic carbon (OC) and elemental carbon (EC). Furthermore, OC is separated into water-insoluble OC (WINSOC) and water-soluble OC (WSOC). Results demonstrate the importance to differentiate between these fractions for 14C-deduced source apportionment, as the contributions can range between both extremes, nearly exclusively biogenic and anthropogenic.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum

    No full text
    In 2011 four ice cores were extracted from the summit of Alto dell'Ortles (3859-m), the highest glacier of South Tyrol in the Italian Alps. This drilling site is located only 37 km southwest from where the Tyrolean Iceman, ∌ 5.3 kyrs old, was discovered emerging from the ablating ice field of Tisenjoch (3210 m, near the Italian-Austrian border) in 1991. The excellent preservation of this mummy suggested that the Tyrolean Iceman was continuously embedded in prehistoric ice and that additional ancient ice was likely preserved elsewhere in South Tyrol. Dating of the ice cores from Alto dell'Ortles based on 210Pb, tritium, beta activity and 14C determinations, combined with an empirical model (COPRA), provides evidence for a chronologically ordered ice stratigraphy from the modern glacier surface down to the bottom ice layers with an age of ∌ 7 kyrs, which confirms the hypothesis. Our results indicate that the drilling site has continuously been glaciated on frozen bedrock since ∌ 7 kyrs BP. Absence of older ice on the highest glacier of South Tyrol is consistent with the removal of basal ice from bedrock during the Northern Hemisphere Climatic Optimum (6-9 kyrs BP), the warmest interval in the European Alps during the Holocene. Borehole inclinometric measurements of the current glacier flow combined with surface ground penetration radar (GPR) measurements indicate that, due to the sustained atmospheric warming since the 1980s, an acceleration of the glacier Alto dell'Ortles flow has just recently begun. Given the stratigraphic-chronological continuity of the Mt. Ortles cores over millennia, it can be argued that this behaviour has been unprecedented at this location since the Northern Hemisphere Climatic Optimum
    corecore