6 research outputs found

    Hyperpolarized carbon-carbon intermolecular multiple quantum coherences

    Get PDF
    Intermolecular multiple quantum coherences (iMQCs) can provide unique contrast with sub-voxel resolution. However, the characteristic growth rate of iMQCs mostly limits these effects to either hydrogen or hydrogen-coupled systems for thermally polarized samples. Hyperpolarization techniques such as dynamic nuclear polarization (DNP) allow for significant increases in the carbon signal (even more signal than that from hydrogen), making carbon iMQCs achievable. We present the first intermolecular multiple quantum signal between two carbon nuclei

    Absolute temperature imaging using intermolecular multiple quantum MRI

    Get PDF
    Purpose: A review of MRI temperature imaging methods based on intermolecular multiple quantum coherences (iMQCs) is presented. Temperature imaging based on iMQCs can provide absolute temperature maps that circumvent the artefacts that other proton frequency shift techniques suffer from such as distortions to the detected temperature due to susceptibility changes and magnetic field inhomogeneities. Thermometry based on iMQCs is promising in high-fat tissues such as the breast, since it relies on the fat signal as an internal reference. This review covers the theoretical background of iMQCs, and the necessary adaptations for temperature imaging using iMQCs. Materials and methods: Data is presented from several papers on iMQC temperature imaging. These studies were done at 7T in both phantoms and in vivo. Results from phantoms of cream (homogeneous mixture of water and fat) are presented as well as in vivo temperature maps in obese mice. Results: Thermometry based on iMQCs offers the potential to provide temperature maps which are free of artefacts due to susceptibility and magnetic field inhomogeneities, and detect temperature on an absolute scale. Conclusions: The data presented in the papers reviewed highlights the promise of iMQC-based temperature imaging in fatty tissues such as the breast. The change in susceptibility of fat with temperature makes standard proton frequency shift methods (even with fat suppression) challenging and iMQC-based imaging offers an alternative approach

    Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance

    Get PDF
    A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T2 -weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications

    Accurate temperature imaging based on intermolecular coherences in magnetic resonance

    Get PDF
    Conventional magnetic resonance methods that provide interior temperature profiles, which find use in clinical applications such as hyperthermic therapy, can develop inaccuracies caused by the inherently inhomogeneous magnetic field within tissues or by probe dynamics, and work poorly in important applications such as fatty tissues. We present a magnetic resonance method that is suitable for imaging temperature in a wide range of environments. It uses the inherently sharp resonances of intermolecular zero-quantum coherences, in this case flipping up a water spin while flipping down a nearby fat spin. We show that this method can rapidly and accurately assign temperatures in vivo on an absolute scale

    Application of mixed spin iMQCs for temperature and chemical-selective imaging

    Get PDF
    The development of accurate and non-invasive temperature imaging techniques has a wide variety of applications in fields such as medicine, chemistry and materials science. Accurate detection of temperature both in phantoms and in vivo can be obtained using iMQCs (intermolecular multiple quantum coherences), as demonstrated in a recent paper [1]. This paper describes the underlying theory of iMQC temperature detection, as well as extensions of that work allowing not only for imaging of absolute temperature but also for imaging of analyte concentrations through chemically-selective spin density imaging

    IDQC anisotropy map imaging for tumor tissue characterization in vivo

    Get PDF
    Intermolecular double quantum coherences (iDQCs), signals that result from simultaneous transitions of two or more separated spins, are known to produce images that are highly sensitive to subvoxel structure, particularly local anisotropy. Here we demonstrate how iDQCs signal can be used to efficiently detect the anisotropy created in breast tumor tissues and prostate tumor tissues by targeted (LHRH-conjugated) superparamagnetic nanoparticles (SPIONs), thereby distinguishing the necrotic area from the surrounding tumor tissue
    corecore