241 research outputs found
Comparative actions of gaba and acetylcholine on the Xenopus laevis lateral line
1. The effects of GABA, acetylcholine and carbachol on the spontaneous activity of afferent nerve fibers in the lateral line of Xenopus laevis are characterized.2. Atropine and bicuculline were also tested on drug- and water motion-evoked activity.3. GABA (0.019-1.25 mM) suppressed and both acetylcholine (1.25-80 [mu]M) and carbachol (1.25-40 [mu]M) increased spontaneous activity. These actions were blocked by bicuculline (100 [mu]M) and atropine (4 [mu]M) respectively.4. Atropine (20 [mu]M) and bicuculline (100 [mu]M) had no effect on water motion-evoked activity.5. The results characterize actions of GABA and acetylcholine not previously described and provide evidence that does not support the hypothesis that GABA or acetylcholine are the afferent transmitter.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25886/1/0000449.pd
Generalized Fisher information matrix in nonextensive systems with spatial correlation
By using the -Gaussian distribution derived by the maximum entropy method
for spatially-correlated -unit nonextensive systems, we have calculated the
generalized Fisher information matrix of for
, ), where ,
and denote the mean, variance and degree of spatial
correlation, respectively, for a given entropic index . It has been shown
from the Cram\'{e}r-Rao theorem that (1) an accuracy of an unbiased estimate of
is improved (degraded) by a negative (positive) correlation , (2)
that of is worsen with increasing , and (3) that of is much
improved for or though it is worst at . Our calculation provides a clear insight to the long-standing
controversy whether the spatial correlation is beneficial or detrimental to
decoding in neuronal ensembles. We discuss also a calculation of the
-Gaussian distribution, applying the superstatistics to the Langevin model
subjected to spatially-correlated inputs.Comment: 18 pages, 3 figures: revised version accepted in Phys. Rev.
Design principles for riboswitch function
Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequenceβfunction relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands
Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay
RNA aptamers that bind the opium alkaloid codeine were generated using an iterative in vitro selection process. The binding properties of these aptamers, including equilibrium and kinetic rate constants, were determined through a rapid, high-throughput approach using surface plasmon resonance (SPR) analysis to measure real-time binding. The approach involves direct coupling of the target small molecule onto a sensor chip without utilization of a carrier protein. Two highest binding aptamer sequences, FC5 and FC45 with K(d) values of 2.50 and 4.00 ΞΌM, respectively, were extensively studied. Corresponding mini-aptamers for FC5 and FC45 were subsequently identified through the described direct coupling Biacore assays. These assays were also employed to confirm the proposed secondary structures of the mini-aptamers. Both aptamers exhibit high specificity to codeine over morphine, which differs from codeine by a methyl group. Finally, the direct coupling method was demonstrated to eliminate potential non-specific interactions that may be associated with indirect coupling methods in which protein linkers are commonly employed. Therefore, in addition to presenting the first RNA aptamers to a subclass of benzylisoquinoline alkaloid molecules, this work highlights a method for characterizing small molecule aptamers that is more robust, precise, rapid and high-throughput than other commonly employed techniques
Aptamer-based multiplexed proteomic technology for biomarker discovery
Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine
Prognostic value of nuclear morphometry in patients with TNM stage T1 ovarian clear cell adenocarcinoma
In 40 patients with TNM stage T1 ovarian clear cell adenocarcinoma, we used nuclear morphometry to study the relations among morphometric variables, clinical prognostic factors and outcome. The presence of one or more giant nuclear cells was positively associated with death (OR = 10.6, P = 0.02) and tended to be associated with disease recurrence (OR = 5.1, P = 0.07). Nuclear irregularity (expressed in terms of the nuclear roundness factor) was positively associated with both death (OR = 8.6, P = 0.02) and disease recurrence (OR = 8.2, P = 0.02). A combination of giant nuclear cell presence or nuclear irregularity proved to be a useful prognostic indicator, with a sensitivity and specificity of 83% and 71% in the prediction of death, and 75% and 71% in the prediction of disease recurrence. Patients' age and substage were of no prognostic value. We conclude that the nuclear morphometric characteristics, especially the presence of giant nuclear cells and nuclear irregularity, may be useful in predicting outcome in patients with early stage ovarian clear cell adenocarcinoma. Β© 1999 Cancer Research Campaig
Design Principles for Ligand-Sensing, Conformation-Switching Ribozymes
Nucleic acid sensor elements are proving increasingly useful in biotechnology and biomedical applications. A number of ligand-sensing, conformational-switching ribozymes (also known as allosteric ribozymes or aptazymes) have been generated by some combination of directed evolution or rational design. Such sensor elements typically fuse a molecular recognition domain (aptamer) with a catalytic signal generator (ribozyme). Although the rational design of aptazymes has begun to be explored, the relationships between the thermodynamics of aptazyme conformational changes and aptazyme performance in vitro and in vivo have not been examined in a quantitative framework. We have therefore developed a quantitative and predictive model for aptazymes as biosensors in vitro and as riboswitches in vivo. In the process, we have identified key relationships (or dimensionless parameters) that dictate aptazyme performance, and in consequence, established equations for precisely engineering aptazyme function. In particular, our analysis quantifies the intrinsic trade-off between ligand sensitivity and the dynamic range of activity. We were also able to determine how in vivo parameters, such as mRNA degradation rates, impact the design and function of aptazymes when used as riboswitches. Using this theoretical framework we were able to achieve quantitative agreement between our models and published data. In consequence, we are able to suggest experimental guidelines for quantitatively predicting the performance of aptazyme-based riboswitches. By identifying factors that limit the performance of previously published systems we were able to generate immediately testable hypotheses for their improvement. The robust theoretical framework and identified optimization parameters should now enable the precision design of aptazymes for biotechnological and clinical applications
The Temporal Winner-Take-All Readout
How can the central nervous system make accurate decisions about external stimuli
at short times on the basis of the noisy responses of nerve cell populations? It
has been suggested that spike time latency is the source of fast decisions.
Here, we propose a simple and fast readout mechanism, the temporal
Winner-Take-All (tWTA), and undertake a study of its accuracy. The tWTA is
studied in the framework of a statistical model for the dynamic response of a
nerve cell population to an external stimulus. Each cell is characterized by a
preferred stimulus, a unique value of the external stimulus for which it
responds fastest. The tWTA estimate for the stimulus is the preferred stimulus
of the cell that fired the first spike in the entire population. We then pose
the questions: How accurate is the tWTA readout? What are the parameters that
govern this accuracy? What are the effects of noise correlations and baseline
firing? We find that tWTA sensitivity to the stimulus grows algebraically fast
with the number of cells in the population, N, in contrast to
the logarithmic slow scaling of the conventional rate-WTA sensitivity with
N. Noise correlations in first-spike times of different
cells can limit the accuracy of the tWTA readout, even in the limit of large
N, similar to the effect that has been observed in
population coding theory. We show that baseline firing also has a detrimental
effect on tWTA accuracy. We suggest a generalization of the tWTA, the
n-tWTA, which estimates the stimulus by the identity of the
group of cells firing the first n spikes and show how this
simple generalization can overcome the detrimental effect of baseline firing.
Thus, the tWTA can provide fast and accurate responses discriminating between a
small number of alternatives. High accuracy in estimation of a continuous
stimulus can be obtained using the n-tWTA
Expression of UV-Sensitive Parapinopsin in the Iguana Parietal Eyes and Its Implication in UV-Sensitivity in Vertebrate Pineal-Related Organs
The pineal-related organs of lower vertebrates have the ability to discriminate different wavelengths of light. This wavelength discrimination is achieved through antagonistic light responses to UV or blue and visible light. Previously, we demonstrated that parapinopsin underlies the UV reception in the lamprey pineal organ and identified parapinopsin genes in teleosts and frogs of which the pineal-related organs were reported to discriminate light. In this study, we report the first identification of parapinopsin in the reptile lineage and show its expression in the parietal eye of the green iguana. Spectroscopic analysis revealed that iguana parapinopsin is a UV-sensitive pigment, similar to lamprey parapinopsin. Interestingly, immunohistochemical analyses using antibodies specific to parapinopsin and parietopsin, a parietal eye green-sensitive pigment, revealed that parapinopsin and parietopsin are colocalized in the outer segments of the parietal eye photoreceptor cells in iguanas. These results strongly suggest that parapinopsin underlies the wavelength discrimination involving UV reception in the iguana parietal eye. The current findings support the idea that parapinopsin is a common photopigment underlying the UV-sensitivity in wavelength discrimination of the pineal-related organs found from lampreys to reptiles
- β¦