2 research outputs found

    3D Human pose, shape and texture from low-resolution images and videos

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works3D human pose and shape estimation from monocular images has been an active research area in computer vision. Existing deep learning methods for this task rely on high-resolution input, which however, is not always available in many scenarios such as video surveillance and sports broadcasting. Two common approaches to deal with low-resolution images are applying super-resolution techniques to the input, which may result in unpleasant artifacts, or simply training one model for each resolution, which is impractical in many realistic applications. To address the above issues, this paper proposes a novel algorithm called RSC-Net, which consists of a Resolution-aware network, a Self-supervision loss, and a Contrastive learning scheme. The proposed method is able to learn 3D body pose and shape across different resolutions with one single model. The self-supervision loss enforces scale-consistency of the output, and the contrastive learning scheme enforces scale-consistency of the deep features. We show that both these new losses provide robustness when learning in a weakly-supervised manner. Moreover, we extend the RSC-Net to handle low-resolution videos and apply it to reconstruct textured 3D pedestrians from low-resolution input. Extensive experiments demonstrate that the RSC-Net can achieve consistently better results than the state-of-the-art methods for challenging low-resolution images.Peer ReviewedPostprint (published version

    3D human shape and pose from a single low-resolution image with self-supervised learning

    Get PDF
    The final publication is available at link.springer.com3D human shape and pose estimation from monocular images has been an active area of research in computer vision, having a substantial impact on the development of new applications, from activity recognition to creating virtual avatars. Existing deep learning methods for 3D human shape and pose estimation rely on relatively high-resolution input images; however, high-resolution visual content is not always available in several practical scenarios such as video surveillance and sports broadcasting. Low-resolution images in real scenarios can vary in a wide range of sizes, and a model trained in one resolution does not typically degrade gracefully across resolutions. Two common approaches to solve the problem of low-resolution input are applying super-resolution techniques to the input images which may result in visual artifacts, or simply training one model for each resolution, which is impractical in many realistic applications. To address the above issues, this paper proposes a novel algorithm called RSC-Net, which consists of a resolution-aware network, a self-supervision loss, and a contrastive learning scheme. The proposed network is able to learn the 3D body shape and pose across different resolutions with a single model. The self-supervision loss encourages scale-consistency of the output, and the contrastive learning scheme enforces scale-consistency of the deep features. We show that both these new training losses provide robustness when learning 3D shape and pose in a weakly-supervised manner. Extensive experiments demonstrate that the RSC-Net can achieve consistently better results than the state-of-the-art methods for challenging low-resolution imagesPeer ReviewedPostprint (author's final draft
    corecore