4,472 research outputs found
Piezoviscous effects in nonconformal contacts lubricated hydrodynamically
The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids
Orbital-Free Density Functional Theory: Kinetic Potentials and Ab-Initio Local Pseudopotentials
In the density functional (DF) theory of Kohn and Sham, the kinetic energy of
the ground state of a system of noninteracting electrons in a general external
field is calculated using a set of orbitals. Orbital free methods attempt to
calculate this directly from the electron density by approximating the
universal but unknown kinetic energy density functional. However simple local
approximations are inaccurate and it has proved very difficult to devise
generally accurate nonlocal approximations. We focus instead on the kinetic
potential, the functional derivative of the kinetic energy DF, which appears in
the Euler equation for the electron density. We argue that the kinetic
potential is more local and more amenable to simple physically motivated
approximations in many relevant cases, and describe two pathways by which the
value of the kinetic energy can be efficiently calculated. We propose two
nonlocal orbital free kinetic potentials that reduce to known exact forms for
both slowly varying and rapidly varying perturbations and also reproduce exact
results for the linear response of the density of the homogeneous system to
small perturbations. A simple and systematic approach for generating accurate
and weak ab-initio local pseudopotentials which produce a smooth slowly varying
valence component of the electron density is proposed for use in orbital free
DF calculations of molecules and solids. The use of these local
pseudopotentials further minimizes the possible errors from the kinetic
potentials. Our theory yields results for the total energies and ionization
energies of atoms, and for the shell structure in the atomic radial density
profiles that are in very good agreement with calculations using the full
Kohn-Sham theory.Comment: To be published in Phys. Rev.
Selective interlayer ferromagnetic coupling between the Cu spins in YBa Cu O grown on top of La Ca MnO
Studies to date on ferromagnet/d-wave superconductor heterostructures focus
mainly on the effects at or near the interfaces while the response of bulk
properties to heterostructuring is overlooked. Here we use resonant soft x-ray
scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between
the in-plane Cu spins in YBa Cu O (YBCO) superconductor when it
is grown on top of ferromagnetic La Ca MnO (LCMO) manganite
layer. This coupling, present in both normal and superconducting states of
YBCO, is sensitive to the interfacial termination such that it is only observed
in bilayers with MnO_2but not with La Ca interfacial
termination. Such contrasting behaviors, we propose, are due to distinct
energetic of CuO chain and CuO plane at the La Ca and
MnO terminated interfaces respectively, therefore influencing the transfer
of spin-polarized electrons from manganite to cuprate differently. Our findings
suggest that the superconducting/ferromagnetic bilayers with proper interfacial
engineering can be good candidates for searching the theorized
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the
competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different
from the published versio
Betel quid chewing as a risk factor for hepatocellular carcinoma: a case-control study
The role of betel quid chewing in the aetiology of hepatocellular carcinoma (HCC) was evaluated in a case–control study including 263 pairs of age- and sex-matched HCC patients and healthy controls. Serum hepatitis B surface antigen (HBsAg), and antibodies to hepatitis C virus (anti-HCV) were determined, and standardized personal interview conducted using a structured questionnaire. Multivariate analysis indicated that betel quid chewing (odds ratio (OR), 3.49; 95% confidence interval (CI), 1.74–6.96), HBsAg (OR, 16.69; 95% CI, 9.92–28.07), anti-HCV (OR, 38.57; 95% CI, 18.15–81.96), and educational duration of less than 10 years (OR, 1.71; 95% CI, 1.05–2.78) are independent risk factors of HCC. In addition, there was an additive interaction between betel quid chewing and chronic infection with either hepatitis B virus (synergy index, 5.37) or hepatitis C virus (synergy index, 1.66). Moreover, risk on HCC increased as duration of betel quid chewing increased, or amount of betel quid consumed (each P for trend < 0.0001). © 2001 Cancer Research Campaign http://www.bjcancer.co
Laboratory experimental study of ocean waves propagating over a partially buried pipeline in a trench layer
YesSeabed instability around a pipeline is one of the primary concerns in offshore pipeline projects. To date, most studies focus on investigating the wave/current-induced response within a porous seabed around either a fully buried pipeline or a thoroughly exposed one. In this study, unlike previous investigations, a series of comprehensive laboratory experiments are carried out in a wave flume to investigate the wave-induced pore pressures around a partially embedded pipeline in a trench layer. Measurements show that the presence of the partially buried pipeline can significantly affect the excess pore pressure in a partially backfilled trench layer, which deviates considerably from that predicted by the theoretical approach. The morphology of the trench layer accompanied with the backfill sediments, especially the deeper trench and thicker backfill (i.e.,b≥1D,e≥0.5D), provides a certain degree of resistance to seabed instability. The amplitude of excess pore pressure around the trench layer roughly exhibits a left-right asymmetric distribution along the periphery of the pipeline, and decays sharply from the upper layer of the trench to the lower region. Deeper trench depth and thicker buried layer significantly weaken the pore-water pressures in the whole trench area, thus sheltering and protecting the submarine pipeline against the transient seabed liquefaction.The National Key research and development program of China (2017YFC1404200), the research grants of Jiangsu (BK20150804), the marine renewable energy research project of State Oceanic Administration (GHME2015GC01), Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University (Project No: 2016491011), the Royal Academy of Engineering the Distinguished Visiting Fellowship (DVF1718-8-7
Aharonov-Bohm Oscillations with Spin: Evidence for Berry's Phase
We report a study of the Aharonov-Bohm effect, the oscillations of the
resistance of a mesoscopic ring as a function of a perpendicular magnetic
field, in a GaAs two-dimensional hole system with a strong spin-orbit
interaction. The Fourier spectra of the oscillations reveal extra structure
near the main peak whose frequency corresponds to the magnetic flux enclosed by
the ring. A comparison of the experimental data with results of simulations
demonstrates that the origin of the extra structure is the geometric (Berry)
phase acquired by the carrier spin as it travels around the ring.Comment: To be published in Physical Review Letter
- …