37 research outputs found
Constraining the parameters of binary systems through time-dependent light deflection
A theory is derived relating the configuration of the cores of active
galaxies, specifically candidates for presumed super-massive black hole
binaries (SMBHBs), to time-dependent changes in images of those galaxies. Three
deflection quantities, resulting from the monopole term, mass quadrupole term,
and spin dipole term of the core, are examined. The resulting observational
technique is applied to the galaxy 3C66B. This technique is found to under
idealized circumstances surpass the technique proposed by Jenet et al. in
accuracy for constraining the mass of SMBHB candidates, but is exceeded in
accuracy and precision by Jenet's technique under currently-understood likely
conditions. The technique can also under favorable circumstances produce
results measurable by currently-available astronomical interferometry such as
very-long baseline-interferometry (VLBI).Comment: 15 pages, 2 figures, accepted in General Relativity & Gravitatio
Evading the pulsar constraints on the cosmic string tension in supergravity inflation
The cosmic string is a useful probe of the early Universe and may give us a
clue to physics at high energy scales where any artificial particle
accelerators cannot reach. Although one of the most promising tools is the
cosmic microwave background, the constraint from gravitational waves is
becoming so stringent that one may not hope to detect its signatures in the
cosmic microwave background. In this paper, we construct a scenario that
contains cosmic strings observable in the cosmic microwave background while
evading the constraint imposed by the recent pulsar timing data. We argue that
cosmic strings with relatively large tension are allowed by delaying the onset
of the scaling regime. We also show that this scenario is naturally realized in
the context of chaotic inflation in supergravity, where the phase transition is
governed by the Hubble induced mass.Comment: 24pages, 3 figures, published in JCA
The effect of extra dimensions on gravity wave bursts from cosmic string cusps
We explore the kinematical effect of having extra dimensions on the gravity
wave emission from cosmic strings. Additional dimensions both round off cusps,
and reduce the probability of their formation. We recompute the gravity wave
burst, taking into account these two factors, and find a potentially
significant damping on the gravity waves of the strings.Comment: 33 pages, 8 figures, published versio
Evolution of circular, non-equatorial orbits of Kerr black holes due to gravitational-wave emission: II. Inspiral trajectories and gravitational waveforms
The inspiral of a ``small'' () compact body into a
``large'' () black hole is a key source of
gravitational radiation for the space-based gravitational-wave observatory
LISA. The waves from such inspirals will probe the extreme strong-field nature
of the Kerr metric. In this paper, I investigate the properties of a restricted
family of such inspirals (the inspiral of circular, inclined orbits) with an
eye toward understanding observable properties of the gravitational waves that
they generate. Using results previously presented to calculate the effects of
radiation reaction, I assemble the inspiral trajectories (assuming that
radiation reacts adiabatically, so that over short timescales the trajectory is
approximately geodesic) and calculate the wave generated as the compact body
spirals in. I do this analysis for several black hole spins, sampling a range
that should be indicative of what spins we will encounter in nature. The spin
has a very strong impact on the waveform. In particular, when the hole rotates
very rapidly, tidal coupling between the inspiraling body and the event horizon
has a very strong influence on the inspiral time scale, which in turn has a big
impact on the gravitational wave phasing. The gravitational waves themselves
are very usefully described as ``multi-voice chirps'': the wave is a sum of
``voices'', each corresponding to a different harmonic of the fundamental
orbital frequencies. Each voice has a rather simple phase evolution. Searching
for extreme mass ratio inspirals voice-by-voice may be more effective than
searching for the summed waveform all at once.Comment: 15 pages, 11 figures, accepted for publication in PRD. This version
incorporates referee's comments, and is much less verbos
Edge Detection, Cosmic Strings and the South Pole Telescope
We develop a method of constraining the cosmic string tension which
uses the Canny edge detection algorithm as a means of searching CMB temperature
maps for the signature of the Kaiser-Stebbins effect. We test the potential of
this method using high resolution, simulated CMB temperature maps. By modeling
the future output from the South Pole Telescope project (including anticipated
instrumental noise), we find that cosmic strings with
could be detected.Comment: 27 pages, 5 figures, reference and minor notes added, discussion of
noise expanded, explanation of equation (4) expande
Pulsar timing arrays and the challenge of massive black hole binary astrophysics
Pulsar timing arrays (PTAs) are designed to detect gravitational waves (GWs)
at nHz frequencies. The expected dominant signal is given by the superposition
of all waves emitted by the cosmological population of supermassive black hole
(SMBH) binaries. Such superposition creates an incoherent stochastic
background, on top of which particularly bright or nearby sources might be
individually resolved. In this contribution I describe the properties of the
expected GW signal, highlighting its dependence on the overall binary
population, the relation between SMBHs and their hosts, and their coupling with
the stellar and gaseous environment. I describe the status of current PTA
efforts, and prospect of future detection and SMBH binary astrophysics.Comment: 18 pages, 4 figures. To appear in the Proceedings of the 2014 Sant
Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag