25 research outputs found

    Mutant CEBPA directly drives the expression of the targetable tumor-promoting factor CD73 in AML

    Get PDF
    The key myeloid transcription factor (TF), CEBPA, is frequently mutated in acute myeloid leukemia (AML), but the direct molecular effects of this leukemic driver mutation remain elusive. To investigate mutant AML, we performed microscale, in vivo chromatin immunoprecipitation sequencing and identified a set of aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. Comparing gene expression changes in human mutant AML and the corresponding mouse model, we identified , encoding CD73, as a cross-species AML gene with an upstream leukemic enhancer physically and functionally linked to the gene. Increased expression of CD73, mediated by the CEBPA-p30 isoform, sustained leukemic growth via the CD73/A2AR axis. Notably, targeting of this pathway enhanced survival of AML-transplanted mice. Our data thus indicate a first-in-class link between a cancer driver mutation in a TF and a druggable, direct transcriptional target

    Moraxella catarrhalis-dependent tonsillar B cell activation does not lead to apoptosis but to vigorous proliferation resulting in nonspecific IgM production.

    No full text
    The respiratory pathogen Moraxella catarrhalis has a high affinity for human IgD and is mitogenic for peripheral blood B lymphocytes. Moraxella IgD-binding protein, which is a multifunctional outer membrane protein with adhesive properties, is responsible for the interaction. Previous experiments with the Ig-binding B cell superantigens protein A and protein L from Staphylococcus aureus and Peptostreptococcus magnus, respectively, have suggested that nonimmune BCR cross-linking induces B cell apoptosis through the intrinsic pathway. The goal of this study was to characterize early and late B cell events in the presence of M. catarrhalis in comparison with S. aureus. Despite an increased phosphatidyl serine translocation as revealed by Annexin V binding in flow cytometry analyses, neither M. catarrhalis nor S. aureus induced activation-associated apoptotic cell death in purified human tonsillar B cells. In contrast, a vigorous B cell proliferation, as quantified using thymidine incorporation and CFSE staining, was observed. An increased expression of an array of surface proteins (i.e., CD19, CD21, CD40, CD45, CD54, CD69, CD86, CD95, and HLA-DR) and IgM production was found upon activation with M. catarrhalis. In conclusion, M. catarrhalis-dependent B cell activation does not result in apoptosis but in cell division and nonspecific IgM synthesis, suggesting that the bacterial interaction with tonsillar B cells serves to redirect the early adaptive immune response

    Effects of NOD-like receptors in human B lymphocytes and crosstalk between NOD1/NOD2 and Toll-like receptors.

    No full text
    NLRs are recently discovered PRRs detecting substructures of peptidoglycans and triggering innate immunity. NLRs are expressed in several cell types, but the presence in human B lymphocytes is still unknown. This study aimed to investigate expression and function of NLRs in human B lymphocytes. B cells were isolated and analyzed for mRNA and protein expression. The functional responsiveness of NOD1 and NOD2 was investigated upon stimulation with the cognate ligands, with or without stimulation via IgM/IgD/CD40 and/or selected TLR agonists. A differential expression of NLRs was demonstrated in blood-derived and tonsillar B cells, whereas no variations were found among naive, germinal center, or memory B cells. Stimulation with the ligands alone did not induce B cell activation. However, upon concomitant BCR triggering, an increase in proliferation was seen, together with an induction of cell surface markers (CD27, CD69, CD71, CD80, CD86, and CD95) and prolonged survival. Peripheral B cells were activated by NOD1 and NOD2 ligands, whereas tonsil-derived B cells responded solely to NOD1. In contrast, costimulation with CD40L failed to induce activation. Additionally, it was found that NLR ligands could enhance TLR-induced proliferation of B cells. The present study demonstrates expression of functional NLRs in human B cells. We show that NOD1 and NOD2 have the ability to augment the BCR-induced activation independently of physical T cell help. Hence, NLRs represent a new pathway for B cell activation and a potentially important system of a host defense role against bacterial infections

    Superantigen- and TLR-dependent activation of tonsillar B cells after receptor-mediated endocytosis.

    No full text
    Classical B lymphocyte activation is dependent on BCR cross-linking in combination with physical interaction with Th cells. Other B cell molecules that contribute to the activation are complement, cytokine, and TLRs recognizing specific pathogen-associated molecular patterns. Moraxella (Branhamella) catarrhalis is a common Gram-negative respiratory pathogen that induces proliferation in human IgD-expressing B cells independently of T cell help. The activation is initiated by the B cell superantigen Moraxella IgD-binding protein (MID) through a nonimmune cross-linking of IgD. However, IgD cross-linking alone is not sufficient to induce proliferation. In this study, we characterized the significance of TLRs in superantigen-dependent B cell activation using whole bacteria or rMID in the presence or absence of TLR ligands. IgD cross-linking by MID sensitized B cells obtained from children with tonsillar hyperplasia for mainly TLR9, whereas TLRs 1, 2, 6, and 7 were less important. The Moraxella-induced activation was inhibited when a dominant-negative TLR9 ligand was added. Interestingly, BCR-mediated endocytosis of whole Moraxella and degradation of live bacteria in naive B cells were observed with fluorescence, confocal, and transmission electron microscopy. This unique observation proved the strong intracellular TLR9 response as well as highlighted the Ag-presenting function of B cells. In conclusion, our findings suggest an important role of TLRs in the adaptive immune response and reveal novel insights into the T cell-independent B cell activation induced by bacteria

    B cell activation by outer membrane vesicles--a novel virulence mechanism.

    Get PDF
    Secretion of outer membrane vesicles (OMV) is an intriguing phenomenon of Gram-negative bacteria and has been suggested to play a role as virulence factors. The respiratory pathogens Moraxella catarrhalis reside in tonsils adjacent to B cells, and we have previously shown that M. catarrhalis induce a T cell independent B cell response by the immunoglobulin (Ig) D-binding superantigen MID. Here we demonstrate that Moraxella are endocytosed and killed by human tonsillar B cells, whereas OMV have the potential to interact and activate B cells leading to bacterial rescue. The B cell response induced by OMV begins with IgD B cell receptor (BCR) clustering and Ca(2+) mobilization followed by BCR internalization. In addition to IgD BCR, TLR9 and TLR2 were found to colocalize in lipid raft motifs after exposure to OMV. Two components of the OMV, i.e., MID and unmethylated CpG-DNA motifs, were found to be critical for B cell activation. OMV containing MID bound to and activated tonsillar CD19(+) IgD(+) lymphocytes resulting in IL-6 and IgM production in addition to increased surface marker density (HLA-DR, CD45, CD64, and CD86), whereas MID-deficient OMV failed to induce B cell activation. DNA associated with OMV induced full B cell activation by signaling through TLR9. Importantly, this concept was verified in vivo, as OMV equipped with MID and DNA were found in a 9-year old patient suffering from Moraxella sinusitis. In conclusion, Moraxella avoid direct interaction with host B cells by redirecting the adaptive humoral immune response using its superantigen-bearing OMV as decoys

    Initiation of MLL-rearranged AML is dependent on C/EBPα

    No full text
    MLL-fusion proteins are potent inducers of oncogenic transformation, and their expression is considered to be the main oncogenic driving force in ∼10% of human acute myeloid leukemia (AML) patients. These oncogenic fusion proteins are responsible for the initiation of a downstream transcriptional program leading to the expression of factors such as MEIS1 and HOXA9, which in turn can replace MLL-fusion proteins in overexpression experiments. To what extent MLL fusion proteins act on their own during tumor initiation, or if they collaborate with other transcriptional regulators, is unclear. Here, we have compared gene expression profiles from human MLL-rearranged AML to normal progenitors and identified the myeloid tumor suppressor C/EBPα as a putative collaborator in MLL-rearranged AML. Interestingly, we find that deletion of Cebpa rendered murine hematopoietic progenitors completely resistant to MLL-ENL–induced leukemic transformation, whereas C/EBPα was dispensable in already established AMLs. Furthermore, we show that Cebpa-deficient granulocytic-monocytic progenitors were equally resistant to transformation and that C/EBPα collaborates with MLL-ENL in the induction of a transcriptional program, which is also apparent in human AML. Thus, our studies demonstrate a key role of C/EBPα in MLL fusion–driven transformation and find that it sharply demarcates tumor initiation and maintenance
    corecore