1,438 research outputs found
A Fully Tunable Single-Walled Carbon Nanotube Diode
We demonstrate a fully tunable diode structure utilizing a fully suspended
single-walled carbon nanotube (SWNT). The diode's turn-on voltage under forward
bias can be continuously tuned up to 4.3 V by controlling gate voltages, which
is ~6 times the nanotube bandgap energy. Furthermore, the same device design
can be configured into a backward diode by tuning the band-to-band tunneling
current with gate voltages. A nanotube backward diode is demonstrated for the
first time with nonlinearity exceeding the ideal diode. These results suggest
that a tunable nanotube diode can be a unique building block for developing
next generation programmable nanoelectronic logic and integrated circuits.Comment: 14 pages, 4 figure
First-principles study of TMNan (TM= Cr, Mn, Fe, Co, Ni; n = 4-7) clusters
Geometry, electronic structure, and magnetic properties of TMNan (TM=Cr-Ni; n
= 4-7) clusters are studied within a gradient corrected density functional
theory (DFT) framework. Two complementary approaches, the first adapted to
all-electron calculations on free clusters, and the second been on plane wave
projector augmented wave (PAW) method within a supercell approach are used.
Except for NiNan, the clusters in this series are found to retain the atomic
moments of the TM atoms, and the magnetic moment presented an odd-even
oscillation with respect to the number of Na atoms. The origin of these
odd-even oscillations is explained from the nature of chemical bonding in these
clusters. Differences and similarities between the chemical bonding and the
magnetic properties of these clusters and the TMNan (TM = Sc, V and Ti; n =
4-6) clusters on one hand, and TM-doped Au and Ag clusters on the other hand,
are discussed
System size and energy dependence of near-side di-hadron correlations
Two-particle azimuthal () and pseudorapidity ()
correlations using a trigger particle with large transverse momentum () in
+Au, Cu+Cu and Au+Au collisions at =\xspace 62.4 GeV and
200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is
separated into a jet-like component, narrow in both and
, and the ridge, narrow in but broad in .
Both components are studied as a function of collision centrality, and the
jet-like correlation is studied as a function of the trigger and associated
. The behavior of the jet-like component is remarkably consistent for
different collision systems, suggesting it is produced by fragmentation. The
width of the jet-like correlation is found to increase with the system size.
The ridge, previously observed in Au+Au collisions at = 200
GeV, is also found in Cu+Cu collisions and in collisions at
=\xspace 62.4 GeV, but is found to be substantially smaller at
=\xspace 62.4 GeV than at = 200 GeV for the
same average number of participants ().
Measurements of the ridge are compared to models.Comment: 17 pages, 14 figures, submitted to Phys. Rev.
Measurements of and Production in + Collisions at = 200 GeV
We report measurements of charmed-hadron (, ) production cross
sections at mid-rapidity in + collisions at a center-of-mass energy of
200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the
hadronic decays , and their charge conjugates,
covering the range of 0.62.0 GeV/ and 2.06.0 GeV/ for
and , respectively. From this analysis, the charm-pair production cross
section at mid-rapidity is = 170 45
(stat.) (sys.) b. The extracted charm-pair cross section is
compared to perturbative QCD calculations. The transverse momentum differential
cross section is found to be consistent with the upper bound of a Fixed-Order
Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.
Inclusive charged hadron elliptic flow in Au + Au collisions at = 7.7 - 39 GeV
A systematic study is presented for centrality, transverse momentum ()
and pseudorapidity () dependence of the inclusive charged hadron elliptic
flow () at midrapidity() in Au+Au collisions at
= 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with
different methods, including correlations with the event plane reconstructed in
a region separated by a large pseudorapidity gap and 4-particle cumulants
(), are presented in order to investigate non-flow correlations and
fluctuations. We observe that the difference between and
is smaller at the lower collision energies. Values of , scaled by
the initial coordinate space eccentricity, , as a function
of are larger in more central collisions, suggesting stronger collective
flow develops in more central collisions, similar to the results at higher
collision energies. These results are compared to measurements at higher
energies at the Relativistic Heavy Ion Collider ( = 62.4 and 200
GeV) and at the Large Hadron Collider (Pb + Pb collisions at =
2.76 TeV). The values for fixed rise with increasing collision
energy within the range studied (). A comparison to
viscous hydrodynamic simulations is made to potentially help understand the
energy dependence of . We also compare the results to UrQMD
and AMPT transport model calculations, and physics implications on the
dominance of partonic versus hadronic phases in the system created at Beam
Energy Scan (BES) energies are discussed.Comment: 20 pages, 12 figures. Version accepted by PR
Identified hadron compositions in p+p and Au+Au collisions at high transverse momenta at GeV
We report transverse momentum ( GeV/) spectra of , , , ,
, and at mid-rapidity in p+p and Au+Au collisions at
= 200 GeV. Perturbative QCD calculations are consistent with
spectra in p+p collisions but do not reproduce and
spectra. The observed decreasing antiparticle-to-particle ratios with
increasing provide experimental evidence for varying quark and gluon jet
contributions to high- hadron yields. The relative hadron abundances in
Au+Au at GeV/ are measured to be similar to the p+p
results, despite the expected Casimir effect for parton energy loss.Comment: 6 pages, 3 figures, published at PR
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
- …