6 research outputs found

    A single DC source generalized switched capacitors multilevel inverter with minimal component count

    Get PDF
    This paper presents a new single-source switched capacitor- (SC-) based multilevel inverter (MLI) design with a boosting potential of three times the supply voltage. To produce a waveform with seven output voltage levels, the suggested switching capacitor inverter consists of eight switches, single diode, and two capacitors. Because capacitors are inherently balanced, there is no need for a balancing circuit or sensor. The structure can be expanded using the provided generalized equations. In addition, the technique for switching control and loss analyses is explored. A fair comparison with the most recent SCMLI topologies has been conducted to demonstrate the merits of the proposed work. Furthermore, the proposed topology is evaluated using the MATLAB/SIMULINK tool, and experiments under both transient and steady-state situations are performed to demonstrate its feasibility. At dynamic-loaded situations, the performance of the proposed SCMLI with dynamic modulation index and switching frequency is tested.International Research: SA/China Joint Research Programme.https://www.hindawi.com/journals/iteesElectrical, Electronic and Computer Engineerin

    A New 13-Level Switched-Capacitor Inverter with Reduced Device Count

    No full text
    This paper proposed a new voltage-boosting 13-level switched-capacitor (SC) cost-effective inverter. The proposed topology comprises fourteen transistors, three capacitors and a single DC source to produce a 13-level staircase waveform. The capacitor voltage balancing problem is inherently solved by the series/parallel technique. Structural description, working principle, calculation of optimum values of capacitance and modulation scheme are briefly described. The comparative analyses with the existing SC multilevel inverter (MLI) in terms of voltage gain, blocking voltage, total standing voltage (TSV), component per level factor and cost function illustrate the merits of the proposed topology. Further, simulation and experimental results at different loading conditions verify the feasibility of the proposed topology

    Transformer-less multilevel inverter (TMLI) with reduced device count and voltage stress

    No full text
    The paper introduces a new transformer-less step-up switched capacitor topology that utilizes twelve switches to create nine different voltage levels. The salient features of the proposed topology are the least switching components, zero leakage current, boosting capability and reduced voltage stresses. Furthermore, the capacitors possess inherent self-balancing properties, eliminating the requirement for an extra circuit to achieve capacitor self-balancing. The paper provides concise explanations of the operational principle, modulation scheme, and loss analysis. A brief comparative analysis of the existing topologies demonstrates the advantages and superiority of the proposed approach. Additionally, the theoretical concept and feasibility of the new topology are verified through simulations and experimental results. Without a filter, the THD at the output voltage and current of the proposed inverter has been measured at 16.48 % and 0.88 %, respectively

    A Novel Three-Phase Switched-Capacitor Five-Level Multilevel Inverter with Reduced Components and Self-Balancing Ability

    No full text
    This paper proposes a step-up 3-Ф switched-capacitor multilevel inverter topology with minimal switch count and voltage stresses. The proposed topology is designed to provide five distinct output voltage levels from a single isolated dc source, making it suitable for medium and low-voltage applications. Each leg of the proposed topology contains four switches, one power diode, and a capacitor. The switching signals are also generated using a staircase universal modulation method. As a result, the proposed topology will operate at both low and high switching frequencies. To highlight the proposed topology’s advantages, a comparison of three-phase topologies wasperformed in terms of the switching components, voltage stress, component count per level factor, and cost function withthe recent literature. The topology achieved an efficiency of about 96.7% with dynamic loading, and 75% of the switches experienced half of the peak output voltage (VDC), whereas the remaining switches experienced peak output voltage (2VDC) as voltage stress. The MATLAB/Simulink environment was used to simulate the proposed topology, and a laboratory prototype was also built to verify the inverter’s theoretical justifications and real-time performance

    A Novel Multigain Switched-Capacitor-Based Topology with Reduced Part Count

    No full text
    In photovoltaic power plants, wind farms, and other types of renewable energy generating facilities, the usage of multilevel inverters (MLIs) is a popular and widely used choice. A unique structurally-based step-up self-balanced compact multigain switched capacitor inverter architecture (MGSCIT) is proposed in this study. The proposed MGSCIT uses two switched capacitors and nine switches to generate a seven-level (7L) output voltage with a voltage gain of three times the input. The suggested topology also includes several other important advantages, such as the minimum number of switching components, three-times voltage gain, inherent self-balancing of capacitor voltage, reduced voltage ripples, reduced voltage, and stresses. The negative voltage levels can be generated without the need for a backend H-bridge (HB). The structural design analysis of the proposed MGSCIT, self-balancing mechanism of capacitor voltages, determination of optimum values of capacitance, and control strategy are explained in detail. To demonstrate the benefits of the proposed topology, a fair comparison is offered with the most current 7-level single-source topologies, focusing on the cost function and the number of components per level. Finally, simulation results demonstrate the accuracy of the theoretical analysis, and the prototype built demonstrates the feasibility and effectiveness of the practical findings, with maximum measured efficiency reaching 95.62%. The voltage and current THD are 31.08% and 1.45%, respectively

    Single-source three-phase switched-capacitor-based MLI

    No full text
    This article proposes a novel three-phase inverter based on the concept of switched capacitors (SCs), which uses a single DC source. A three-phase, seven-level line-to-line output voltage waveform is synthesised by the proposed topology, which includes eight switches, two capacitors, and one diode per phase leg. The proposed topology offers advantages in terms of inherent voltage gain, lower voltage stresses on power switches, and a reduced number of switching components. Additionally, the switched capacitors are self-balanced, thereby eliminating the need for a separate balancing circuit. The proposed structure and its operating principle, the self-balancing mechanism of the capacitors, and the control strategy are all thoroughly explained in the article. The proposed topology has also been compared with some recent SC topologies. Lastly, the proposed topology has been shown to be feasible through simulation and experimentation
    corecore