1,527 research outputs found

    Adaptive Three Layer Hybrid Reconfigurable Intelligent Surface for 6G Wireless Communication: Trade-offs and Performance

    Full text link
    A potential candidate technology for the development of future 6G networks has been recognized as Reconfigurable Intelligent Surface (RIS). However, due to the variation in radio link quality, traditional passive RISs only accomplish a minimal signal gain in situations with strong direct links between user equipment (UE) and base station (BS). In order to get over this fundamental restriction of smaller gain, the idea of active RISs might be a suitable solution. In contrast to current passive RIS, which simply reflects and directs signals without any additional amplification, active RISs have the ability to enhance reflected signals by the incorporation of amplifiers inside its elements. However, with additional amplifiers, apart from the relatively complex attributes of RIS-assisted arrangements, the additional energy consumption of such technologies is often disregarded. So, there might be a tradeoff between the additional energy consumption for the RIS technologies and the overall gain acquired by deploying this potential advancement. The objective of this work is to provide a primary idea of a three-layer hybrid RIS-assisted configuration that is responsive to both active and passive RIS, as well as an additional dormant or inactive state. The single RIS structure should be capable of adjusting its overall configuration in response to fluctuations in transmit power and radio link quality. Furthermore, our fabricated passive RIS-assisted structure verifies a portion of the proposed idea, with simulations highlighting its advantages over standalone passive or active RIS-assisted technologies.Comment: Accepted for presentation and publication at the 8th IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob) Conferenc

    IMECE 2005-83000 AN EFFICIENT VOLUMETRIC-ERROR MEASUREMENT METHOD FOR FIVE-AXIS MACHINE TOOLS

    Get PDF
    ABSTRACT Accurate measurement of volumetric errors plays an important role for error compensation for multi-axis machines. The error measurements for volumetric errors of five-axis machines are usually very complex and costly than that for three-axis machines. In this study, a direct and simple measurement method using telescoping ball-bar system for volumetric errors for different types of five-axis machines was developed. The method using two-step measurement methodology and incorporating with derived error models, can quickly determine the five degrees-of-freedom (DOF) volumetric errors of five-axis machine tools. Comparing to most of the current used measurement methods, the proposed method provides the advantages of low cost, high efficiency, easy setup, and high accuracy

    Use of Chinese Herbal Medicine Was Related to Lower Risk of Osteoporotic Fracture in Sarcopenia Patients: Evidence from Population-Based Health Claims

    Get PDF
    Introduction: With population aging, sarcopenia and its accompanying risk of osteoporotic fracture has drawn increased attention. Nowadays, while Chinese herbal medicine (CHM) is often used as complementary therapy for many medical conditions, its effect against likelihood of osteoporotic fracture among sarcopenia subjects was not fully elucidated yet. We therefore conducted a population-level study to compare osteoporotic fracture risk for sarcopenia persons with or without CHM use. Methods: Using the patient record from a nationwide insurance database, we recruited persons with newly diagnosed sarcopenia and simultaneously free of osteoporotic fracture between 2000 and 2010. Propensity score matching was then applied to randomly select sets of CHM users and non-CHM users. All of them were tracked until end of 2013 to measure the incidence and adjusted hazard ratios (HRs) for new new-onset fracture in multivariable Cox proportional hazards model. Results: Compared to non-CHM users, the CHM users indeed had a lower incidence of osteoporotic fracture (121.22 vs 156.61 per 1000 person-years). Use of CHM correlated significantly with a lower fracture likelihood after adjusting for potential covariates, and those receiving CHM treatment for more than two years experienced a remarkably lower risk by 73%. Uses of several herbal formulae were correlated to reduced risk of osteoporotic fracture, such as Caulis Spatholobi, Xuduan, Duzhong, Danshen, Shu-Jing-Huo-Xue- Tang, Du-Huo-Ji-Sheng-Tang, Shao-Yao-Gan-Cao-Tang, and Shen-Tong-Zhu-Yu -Tang. Conclusion: Our study depicted that cumulative CHM exposure was inversely associated with osteoporotic fracture risk in a duration-dependent manner, implying that CHM treatment may be embraced as routine care in preventing incident osteoporotic fracture

    Spin Relaxation in Single Layer Graphene with Tunable Mobility

    Full text link
    Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin-orbit and hyperfine couplings. In experiments, however, spin lifetimes in single layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune mobility between 2700 and 12000 cm2/Vs, we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.Comment: 13 pages, 5 figure

    Adding Chinese Herbal Medicine to Routine Care is Associated With a Lower Risk of Rheumatoid Arthritis Among Patients With Asthma: A Population-Based Retrospective Cohort Study

    Get PDF
    Objective: Due to the shared pathogenesis of asthma and rheumatoid arthritis (RA), patients with asthma were found to have a higher risk of RA. While the benefits and safety of Chinese herbal medicine (CHM) for asthma have been reported, the scientific evidence regarding its effect on RA is limited. This longitudinal cohort study aimed to determine the relation between CHM use and RA risk in patients with asthma. Methods: Using the nationwide claims data, we enrolled 33,963 patients 20–80 years of age who were newly diagnosed with asthma and simultaneously free of RA between 2000 and 2007. From this sample, we utilized propensity score matching to create sets of participants as treatment and control groups, which comprised 13,440 CHM users and 13,440 non-CHM users. The incidence rate and hazard ratio (HR) for RA between the two groups were estimated at the end of 2013. A Cox proportional hazards model was constructed to examine the impact of the CHM use on the risk of RA. Results: The cumulative incidence of RA was substantially lower in the CHM user group. In the follow-up period, 214 patients in the CHM user group (1.92 per 1,000 person-years) and 359 patients in the non-CHM user group (2.92 per 1,000 person-years) developed RA (adjusted HR = 0.63, 95% confidence interval: 0.54–0.75). Of the commonly-prescribed formulae, nine CHM products were associated with a lower RA risk: Xiao-Qing-Long-Tang, Ma-Xing-Gan-Shi-Tang, Ding-Chuan-Tang, Xin-Yi-Qing-Fei-Tang, Bei Mu, Jie Geng, Xing Ren, Da Huang, and San Chi. Conclusion: This study found that patients with asthma who received CHM treatment, in addition to the conventional therapy, had a lower risk of RA. Use of CHM treatment may be integrated into conventional therapy to reduce subsequent RA risk among asthma patients

    Nanoscale control of exchange bias with BiFeO3 thin films

    Get PDF
    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions, an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field combined with large shifts of the hysteresis loop (exchange bias), have been observed in these heterostructures, which depend directly on the type and crystallography of the nanoscale (2 nm) domain walls in the BiFeO3 film. We show that the magnitude of the exchange bias interaction scales with the length of 109 degree ferroelectric domain walls in the BiFeO3 thin films which have been probed via piezoresponse force microscopy and x-ray magnetic circular dichroism.Comment: Accepted to Nano Letters May 200
    • …
    corecore