5,135 research outputs found

    On a Moving Boundary Problem of Transitional Ballistics

    Get PDF
    A major problem which arises in computer simulation of the firing of a gun weapon is the development of numerical schemes which effectively account for the physics of projectile motion. The chief difficulty is that away from the projectile the calculation is ordinarily accomplished on a fixed numerical grid, whereas due to projectile movement some cells of the grid near the projectile undergo volume changes as the calculation proceeds. A local finite volume scheme is developed which accounts for the expansion or compression of cells fore-and-aft of the projectile. Through the process of numerical experiment, the effectiveness of the scheme is assessed, with quite good results. The rapid discharge of propellant gas from a gun weapon produces a strong shock wave which propagates into the environment, while other interacting shocks form within the developing plume. For this reason, strong interest in the determination of shock capturing algorithms which can be used away from the projectile arises. In this respect, a theoretical weak derivative form (WDF) is derived for linear hyperbolic systems of conservation laws. The virtue of the WDF approach is that it indicates how to difference in the presence of a flow discontinuity, without differencing across the discontinuity. This differencing produces a robust shock capturing scheme whose extension to the nonlinear case is apparent. The WDF shock capturing scheme so obtained is shown to be equivalent to a flux-splitting scheme studied by P. L. Roe, thus leading to a better understanding of the schemes of Godunov and Roe, as well as upwind differencing in general. Roe\u27s scheme is investigated in detail. Three views of the scheme are obtained, one of which is new. Harten\u27s second-order accurate extension of Roe\u27s method is then used in simulating the flow around a typical weapon\u27s configuration. These numerical results reinforce the belief that the local finite volume scheme effectively accounts for projectile motion

    Renal Effects of Preeclampsia

    Get PDF

    Humans and Technology: Forms of Conjoined Agency in Organizations

    Get PDF
    Organizations are increasingly deploying technologies that have the ability to parse through large amounts of data, acquire skills and knowledge, and operate autonomously. These technologies diverge from prior technologies in their capacity to exercise intentionality over protocol development or action selection in the practice of organizational routines, thereby affecting organizations in new and distinct ways. In this article, we categorize four forms of conjoined agency between humans and technologies: (1) conjoined agency with assisting technologies, (2) conjoined agency with arresting technologies, (3) conjoined agency with augmenting technologies, and (4) conjoined agency with automating technologies. We then theorize on the different ways in which these forms of conjoined agency impact a routine’s change at a particular moment in time as well as a routine’s responsiveness to feedback over time. In doing so, we elaborate on how organizations may evolve in varied and diverse ways based on the form(s) of conjoined agency they deploy in their organizational design choices

    Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, I-Iipposideros bicolor and I-Iipposideros speoris

    Get PDF
    1. Two hipposiderid bats,H. bicolor andH. speoris, were observed in their natural foraging areas in Madurai (South India). Both species hunt close together near the foliage of trees and bushes but they differ in fine structure of preferred hunting space:H. bicolor hunts within the foliage, especially whenH. speoris is active at the same time, whereasH. speoris never flies in dense vegetation but rather in the more open area (Fig. 1, Table 1). 2. Both species emit CF/FM-sounds containing only one harmonic component in almost all echolocation situations. The CF-parts of CF/FM-sounds are species specific within a band of 127–138 kHz forH. speoris and 147–159 kHz forH. bicolor (Tables 2 and 3). 3. H. speoris additionally uses a complex harmonic sound during obstacle avoidance and during laboratory tests for Doppler shift compensation.H. bicolor consistently emits CF/FM-sounds in these same situations (Fig. 2). 4. Both hipposiderid bats respond to Doppler shifts in the returning echoes by lowering the frequency of the emitted sounds (Fig. 3). However, Doppler compensations are incomplete as the emitted frequencies are decreased by only 55% and 56% (mean values) of the full frequency shifts byH. speoris andH, bicolor, respectively. 5. The differences in Doppler shift compensation, echolocating and hunting behavior suggest thatH. speoris is less specialized on echolocation with CF/FM-sounds thanH. bicolor
    • …
    corecore