5 research outputs found

    Physics Course at the Undergraduate Study of Radiological Technology

    Get PDF
    Tehnološki napredak i razvoj računala omogućili su proizvodnju složenih uređaja koji koriste ionizirajuće zračenje za elektroničko snimanje ljudskog tijela, kao i obradu slikovnih prikaza u dijagnostičke i terapijske svrhe. Studentima Prijediplomskog stručnog studija Radiološka tehnologija je neophodno temeljito poznavanje fizike za učinkovitu i sigurnu uporabu novih tehnologija, ali i za razumijevanje principa njihovog rada. Iako spomenuti studij povezuje znanja iz područja informatike i statistike s medicinskim, tek uz razumijevanje fizikalnih zakonitosti o konceptima koji se spominju u okviru medicinske radiologije, studenti postaju kompletni stručnjaci educirani za samostalan rad ili rad u timu u području radiografije, nuklearno-medicinske te radiološke dijagnostike i terapije. Istovremeno, poznavanje i konceptualno tumačenje zakona fizike nužni su za razumijevanje temeljnih bioloških procesa unutar ljudskog tijela, poput rada srca ili prijenosa živčanih impulsa. Stoga se u okviru kolegija Fizika stavlja naglasak na poznavanje strukture tvari i građe atoma, elektromagnetizma, ultrazvuka, elementarne nuklearne fizike, prirode ionizirajućeg zračenja te proizvodnje i primjene X zraka koje su temeljne za razumijevanje fizike medicinskog snimanja. U radu su izdvojena neka područja koja su sastavni dio kolegija Fizika na Prijediplomskom stručnom studiju Radiološke tehnologije.Technological advances and the development of computers have enabled the production of sophisticated devices that use ionizing radiation for electronic imaging of the human body and for image processing for the purpose of diagnosis and treatment of disease. Undergraduate students in radiological technology need a thorough knowledge of physics in order to use these new technologies efficiently and safely and to understand the fundamentals of their work. ​Although the undergraduate program in radiological technology combines knowledge from computer science and statistics with medical knowledge, it is only through an understanding of the physical laws of the concepts mentioned in the context of medical radiology that students become complete experts, able to work independently or as part of a team in the field of radiography, nuclear medicine, and radiologic diagnosis and therapy. At the same time, knowledge and conceptual interpretation of the laws of physics are necessary for understanding basic biological processes in the human body, such as the cardiac activity or the transmission of nerve impulses. Therefore, the subject of physics focuses on knowledge of the structure of matter and the structure of atoms, electromagnetism, ultrasound, elementary nuclear physics, the nature of ionizing radiation and the generation and application of X-rays, which is fundamental to understanding the physics of medical imaging. The paper introduces some areas of science that are an integral part of the Physics course at the Undergraduate Professional Study of Radiological Technology

    Physics Course at the Undergraduate Study of Radiological Technology

    Get PDF
    Tehnološki napredak i razvoj računala omogućili su proizvodnju složenih uređaja koji koriste ionizirajuće zračenje za elektroničko snimanje ljudskog tijela, kao i obradu slikovnih prikaza u dijagnostičke i terapijske svrhe. Studentima Prijediplomskog stručnog studija Radiološka tehnologija je neophodno temeljito poznavanje fizike za učinkovitu i sigurnu uporabu novih tehnologija, ali i za razumijevanje principa njihovog rada. Iako spomenuti studij povezuje znanja iz područja informatike i statistike s medicinskim, tek uz razumijevanje fizikalnih zakonitosti o konceptima koji se spominju u okviru medicinske radiologije, studenti postaju kompletni stručnjaci educirani za samostalan rad ili rad u timu u području radiografije, nuklearno-medicinske te radiološke dijagnostike i terapije. Istovremeno, poznavanje i konceptualno tumačenje zakona fizike nužni su za razumijevanje temeljnih bioloških procesa unutar ljudskog tijela, poput rada srca ili prijenosa živčanih impulsa. Stoga se u okviru kolegija Fizika stavlja naglasak na poznavanje strukture tvari i građe atoma, elektromagnetizma, ultrazvuka, elementarne nuklearne fizike, prirode ionizirajućeg zračenja te proizvodnje i primjene X zraka koje su temeljne za razumijevanje fizike medicinskog snimanja. U radu su izdvojena neka područja koja su sastavni dio kolegija Fizika na Prijediplomskom stručnom studiju Radiološke tehnologije.Technological advances and the development of computers have enabled the production of sophisticated devices that use ionizing radiation for electronic imaging of the human body and for image processing for the purpose of diagnosis and treatment of disease. Undergraduate students in radiological technology need a thorough knowledge of physics in order to use these new technologies efficiently and safely and to understand the fundamentals of their work. ​Although the undergraduate program in radiological technology combines knowledge from computer science and statistics with medical knowledge, it is only through an understanding of the physical laws of the concepts mentioned in the context of medical radiology that students become complete experts, able to work independently or as part of a team in the field of radiography, nuclear medicine, and radiologic diagnosis and therapy. At the same time, knowledge and conceptual interpretation of the laws of physics are necessary for understanding basic biological processes in the human body, such as the cardiac activity or the transmission of nerve impulses. Therefore, the subject of physics focuses on knowledge of the structure of matter and the structure of atoms, electromagnetism, ultrasound, elementary nuclear physics, the nature of ionizing radiation and the generation and application of X-rays, which is fundamental to understanding the physics of medical imaging. The paper introduces some areas of science that are an integral part of the Physics course at the Undergraduate Professional Study of Radiological Technology

    Nastava u suvremenoj školi

    Get PDF
    Education plays a key role in the development of human civilisation. Learning and teaching methods are still evolving and undergoing numerous changes as a result of scientific knowledge and revolutionary ideas of stakeholders in the education system, and the development of advanced technologies. We are all familiar with traditional ways of learning wherein educational process is conducted in such a way that the focus is primarily on content. Jan Amos Komensky, the alpha and omega of education science, laid out the class-subject-lesson traditional education system and designed, as early as the 17th century, the school as an institution capable of meeting the mass educational demands of the time. Because these traditional methods use repetition and memorisation of information as the principal means of acquiring knowledge, students are unable to develop their critical thinking, problem-solving and decision-making skills. In the 21st century, teaching should be focused on the effective cooperation between teachers and students who are actively participating in the teaching process, because such an approach ensures the training of innovative individuals who go on to become qualified professionals and responsible citizens, thus creating a more affluent and safer society in general. This paper provides an overview of the important characteristics of modern schools, as well as some modern teaching strategies.Obrazovanje ima ključnu ulogu u razvoju ljudske civilizacije. Metode učenja i poučavanja još uvijek se neprestano razvijaju i prolaze kroz brojne promjene zahvaljujući znanstvenim spoznajama, revolucionarnim idejama osoba uključenih u obrazovni sustav kao i razvoju naprednih tehnologija. Svi smo dobro upoznati s tradicionalnim načinima učenja u kojima se obrazovanje provodi tako da je fokus usmjeren na sadržaj. Jan Amos Komensky, alfa i omega pedagoške znanosti, tvorac razredno-predmetno-satnoga tradicionalnog sustava obrazovanja, već je u 17. stoljeću osmislio školu kao instituciju primjerenu zahtjevima tadašnjega vremena za masovnim obrazovanjem. Budući da te tradicionalne metode koriste ponavljanje i pamćenje informacija kao temeljni način stjecanja znanja, učenici ne razvijaju svoje kritičko razmišljanje, vještine rješavanja problema i donošenja odluka. Nastava u 21. stoljeću treba biti usmjerena na učinkovitu suradnju nastavnika i učenika koji su aktivno uključeni u nastavni proces jer takav pristup osigurava osposobljavanje inovativnih pojedinaca koji postaju kvalitetni stručnjaci i odgovorni građani te na takav način stvaraju bogatije i sigurnije društvo u cjelini. U ovom radu dan je pregled bitnih obilježja suvremene škole, kao i nekih suvremenih nastavnih strategija

    University students\u27 conceptual understanding of microscopic models of electrical and thermal conduction in solids

    No full text
    Teaching the concepts of electrical and thermal transport in solids begins in elementary school through simple macroscopic models and progressively develops to microscopic quantum models within specialized university courses. Educational research has pointed to a number of misconceptions in this field, especially when it comes to understanding related phenomena at the microscopic level. This study aimed to design an appropriate open-ended version of the concept inventory to test the level of students\u27 understanding of microscopic models of electrical and thermal conduction in solids (METCS). The METCS concept inventory consists of 27 open-ended questions that examine the understanding of different and interrelated concepts. We used it as a tool for conducting interviews on a sample of ten students from the universities of Rijeka and Split (Croatia). The results of our research confirmed some previously discovered students\u27 misconceptions and revealed a wide range of new ones. These results can be used to stimulate student discussions and to design curricula and lecture plans for more efficient teaching of transport phenomena in solids. The obtained spectrum of misconceptions will serve as a reference tool for the development of a multiple-choice conceptual METCS test to allow research on larger sample

    Causes of the Shortage of Physics Teachers in Croatia

    No full text
    Knowing the causes of the shortage of physics teachers in primary and secondary schools is necessary for the development of effective educational policies because the shortage of physics teachers is a global and persistent problem with negative consequences for the quality of education, but also for the survival of the physics profession as a whole. The aim of this study was to investigate, for the first time, the opinions of Croatian physics teachers on the causes of the deficit in their profession. For this purpose, we conducted a descriptive cross-sectional study using an online survey with Likert-type items and a constructed response item. A total of 390 respondents from all over Croatia participated in the survey, which is 29% of the total population of Croatian physics teachers in the 2022/2023 school year. According to their opinion, the causes of the shortage of Croatian physics teachers are related to the following: lack of incentives and support from the relevant institutions and bodies, the inadequacy of physics content in the curricula, the lack of motivation and negative attitude of students towards physics, impeded professional development, unequal opportunities, and challenges such as excessive workload. The results obtained provide a concrete basis for the development of an effective policy to solve the problem of the physics teacher shortage in Croatia and beyond by governments, universities, and schools
    corecore