6 research outputs found

    KRAB-Induced Heterochromatin Effectively Silences <i>PLOD2</i> Gene Expression in Somatic Cells and is Resilient to TGFβ1 Activation

    Get PDF
    Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Krüppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%-70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFβ1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFβ1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFβ1-induced and uninduced PLOD2 expression

    KRAB-Induced Heterochromatin Effectively Silences PLOD2 Gene Expression in Somatic Cells and is Resilient to TGFβ1 Activation

    No full text
    Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Krüppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%-70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFβ1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFβ1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFβ1-induced and uninduced PLOD2 expression

    Lipolytic enzymes and hydrolytic rancidity

    No full text
    Lipolysis, the enzymic hydrolysis of milk lipids to free fatty acids and partial glycerides, is a constant concern to the dairy industry because of the detrimental effcts it can have on the flvor and other properties of milk and milk products. However, free fatty acids also contribute to the desirable flavor of milk and milk products when present at low concentrations and, in some cheeses, when present at high concentrations. The enzymes responsible for the detrimental effects of lipolysis are of two main types: those indigenous to milk, and those of microbial origin. The major indigenous milk enzyme is lipoprotein lipase. It is active on the fat in natural milk fat globules only after their disruption by physical treatments or if certain blood serum lipoproteins are present. The major microbial lipases are produced by psychrotrophic bacteria. Many of these enzymes are heat stable and are particularly significant in stored products. Human milk differs from cows' milk in that it contains two lipases, a lipoprotein lipase and a bile salt-stimulated lipase. The ability of the latter to cause considerable hydrolysis of ingested milk lipids has important nutritional implications
    corecore