223 research outputs found
A Privacy-Preserving and Transparent Certification System for Digital Credentials
A certification system is responsible for issuing digital credentials, which attest claims about a subject, e.g., an academic diploma. Such credentials are valuable for individuals and society, and widespread adoption requires a trusted certification system. Trust can be gained by being transparent when issuing and verifying digital credentials. However, there is a fundamental tradeoff between privacy and transparency. For instance, admitting a student to an academic program must preserve the student’s privacy, i.e., the student’s grades must not be revealed to unauthorized parties. At the same time, other applicants may demand transparency to ensure fairness in the admission process. Thus, building a certification system with the right balance between privacy and transparency is challenging.
This paper proposes a novel design for a certification system that provides sufficient transparency and preserves privacy through selective disclosure of claims such that authorized parties can verify them. Moreover, unauthorized parties can also verify the correctness of the certification process without compromising privacy. We achieve this using an incremental Merkle tree of cryptographic commitments to users' credentials. The commitments are added to the tree based on verifying zero-knowledge issuance proofs. Users store credentials off-chain and can prove the ownership and authenticity of credentials without revealing their commitments. Further, our approach enables users to prove statements about the credential’s claims in zero-knowledge. Our design offers a cost-efficient solution, reducing the amount of linkable on-chain data by up to 79% per credential compared to prior work, while maintaining transparency.publishedVersio
Recommended from our members
IFNγ Inhibits the Cytosolic Replication of Shigella flexneri via the Cytoplasmic RNA Sensor RIG-I
The activation of host cells by interferon gamma (IFNγ) is essential for inhibiting the intracellular replication of most microbial pathogens. Although significant advances have been made in identifying IFNγ-dependent host factors that suppress intracellular bacteria, little is known about how IFNγ enables cells to recognize, or restrict, the growth of pathogens that replicate in the host cytoplasm. The replication of the cytosolic bacterial pathogen Shigella flexneri is significantly inhibited in IFNγ-stimulated cells, however the specific mechanisms that mediate this inhibition have remained elusive. We found that S. flexneri efficiently invades IFNγ-activated mouse embryonic fibroblasts (MEFs) and escapes from the vacuole, suggesting that IFNγ acts by blocking S. flexneri replication in the cytosol. This restriction on cytosolic growth was dependent on interferon regulatory factor 1 (IRF1), an IFNγ-inducible transcription factor capable of inducing IFNγ-mediated cell-autonomous immunity. To identify host factors that restrict S. flexneri growth, we used whole genome microarrays to identify mammalian genes whose expression in S. flexneri-infected cells is controlled by IFNγ and IRF1. Among the genes we identified was the pattern recognition receptor (PRR) retanoic acid-inducible gene I (RIG-I), a cytoplasmic sensor of foreign RNA that had not been previously known to play a role in S. flexneri infection. We found that RIG-I and its downstream signaling adaptor mitochondrial antiviral signaling protein (MAVS)—but not cytosolic Nod-like receptors (NLRs)—are critically important for IFNγ-mediated S. flexneri growth restriction. The recently described RNA polymerase III pathway, which transcribes foreign cytosolic DNA into the RIG-I ligand 5′-triphosphate RNA, appeared to be involved in this restriction. The finding that RIG-I responds to S. flexneri infection during the IFNγ response extends the range of PRRs that are capable of recognizing this bacterium. Additionally, these findings expand our understanding of how IFNγ recognizes, and ultimately restricts, bacterial pathogens within host cells
Single-dopant resonance in a single-electron transistor
Single dopants in semiconductor nanostructures have been studied in great
details recently as they are good candidates for quantum bits, provided they
are coupled to a detector. Here we report coupling of a single As donor atom to
a single-electron transistor (SET) in a silicon nanowire field-effect
transistor. Both capacitive and tunnel coupling are achieved, the latter
resulting in a dramatic increase of the conductance through the SET, by up to
one order of magnitude. The experimental results are well explained by the rate
equations theory developed in parallel with the experiment.Comment: 16 pages, 8 figure
Semiclassical theory of shot noise in disordered SN contacts
We present a semiclassical theory of shot noise in diffusive superconductor -
normal metal contacts. At subgap voltages, we reproduce the doubling of shot
noise with respect to conventional normal-metal contacts, which is interpreted
in terms of an energy balance of electrons. Above the gap, the voltage
dependence of the noise crosses over to the standard one with a
voltage-independent excess noise. The semiclassical description of noise leads
to correlations between currents at different electrodes of multiterminal SN
contacts which are always of fermionic type, i.e. negative. Using a quantum
extension of the Boltzmann - Langevin method, we reproduce the peculiarity of
noise at the Josephson frequency and obtain an analytical frequency dependence
of noise at above-gap voltages.Comment: 4 pages RevTeX, 1 eps figur
Peroxisome proliferator-activated receptor β activation promotes myonuclear accretion in skeletal muscle of adult and aged mice
We reported recently that peroxisome proliferator-activated receptor β (PPARβ) activation promotes a calcineurin-dependent exercise-like remodelling characterised by increased numbers of oxidative fibres and capillaries. As physical exercise also induces myonuclear accretion, we investigated whether PPARβ activation alters myonuclear density. Transgenic muscle-specific PPARβ over-expression induced 14% increase of myonuclear density. Pharmacological PPARβ activation promoted rapid and massive myonuclear accretion (20% increase after 48 h), which is dependent upon calcineurin/nuclear factor of activated T cells signalling pathway. In vivo bromodeoxyuridine labelling and proliferating cell nuclear antigen immunodetection revealed that PPARβ activation did not promote cell proliferation, suggesting that the PPARβ-promoted myonuclear accretion involves fusion of pre-existing muscle precursor cells to myofibres rather than cell division. Finally, we showed that in skeletal muscle, ageing led to a down-regulation of PPARβ accompanied by decrease of both oxidative fibre number and myonuclear density. PPARβ pharmacological activation counteracts, at least in part, the ageing-driven muscle remodelling
Shot Noise through a Quantum Dot in the Kondo Regime
The shot noise in the current through a quantum dot is calculated as a
function of voltage from the high-voltage, Coulomb blockaded regime to the
low-voltage, Kondo regime. Using several complementary approaches, it is shown
that the zero-frequency shot noise (scaled by the voltage) exhibits a
non-monotonic dependence on voltage, with a peak around the Kondo temperature.
Beyond giving a good estimate of the Kondo temperature, it is shown that the
shot noise yields additional information on the effects of electronic
correlations on the local density of states in the Kondo regime, unaccessible
in traditional transport measurements.Comment: 4 pages, 1 figur
Full Counting Statistics of Multiple Andreev Reflections in incoherent diffusive superconducting junctions
We present a theory for the full distribution of current fluctuations in
incoherent diffusive superconducting junctions, subjected to a voltage bias.
This theory of full counting statistics of incoherent multiple Andreev
reflections is valid for arbitrary applied voltage. We present a detailed
discussion of the properties of the first four cumulants as well as the low and
high voltage regimes of the full counting statistics. The work is an extension
of the results of Pilgram and the author, Phys. Rev. Lett. 94, 086806 (2005).Comment: Included in special issue Spin Physics of Superconducting
heterostructures of Applied Physics A: Materials Science & Processin
Current noise in long diffusive SNS junctions in the incoherent MAR regime
Spectral density of current fluctuations at zero frequency is calculated for
a long diffusive SNS junction with low-resistive interfaces. At low
temperature, T << Delta, the subgap shot noise approaches linear voltage
dependence, S=(2/ 3R)(eV + 2Delta), which is the sum of the shot noise of the
normal conductor and voltage independent excess noise. This result can also be
interpreted as the 1/3-suppressed Poisson noise for the effective charge q =
e(1+2Delta/eV) transferred by incoherent multiple Andreev reflections (MAR). At
higher temperatures, anomalies of the current noise develop at the gap
subharmonics, eV = 2Delta/n. The crossover to the hot electron regime from the
MAR regime is analyzed in the limit of small applied voltages.Comment: improved version, to be published in Phys. Rev.
Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor
We report the dispersive readout of the spin state of a double quantum dot
formed at the corner states of a silicon nanowire field-effect transistor. Two
face-to-face top-gate electrodes allow us to independently tune the charge
occupation of the quantum dot system down to the few-electron limit. We measure
the charge stability of the double quantum dot in DC transport as well as
dispersively via in-situ gate-based radio frequency reflectometry, where one
top-gate electrode is connected to a resonator. The latter removes the need for
external charge sensors in quantum computing architectures and provides a
compact way to readout the dispersive shift caused by changes in the quantum
capacitance during interdot charge transitions. Here, we observe Pauli
spin-blockade in the high-frequency response of the circuit at finite magnetic
fields between singlet and triplet states. The blockade is lifted at higher
magnetic fields when intra-dot triplet states become the ground state
configuration. A lineshape analysis of the dispersive phase shift reveals
furthermore an intradot valley-orbit splitting of 145 eV.
Our results open up the possibility to operate compact CMOS technology as a
singlet-triplet qubit and make split-gate silicon nanowire architectures an
ideal candidate for the study of spin dynamics
Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study
Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015
- …