2 research outputs found

    Isotherm kinetics of CR(iii) removal by non-viable cells of acinetobacter haemolyticus

    No full text
    The potential use of non-viable biomass of a Gram negative bacterium i.e. Acinetobacter haemolyticus to remove Cr(III) species from aqueous environment was investigated. Highest Cr(III) removal of 198.80 mg g(-1) was obtained at pH 5, biomass dosage of 15 mg cell dry weight, initial Cr(III) of 100 mg L-1 and 30 min of contact time. The Langmuir and Freundlich models fit the experimental data (R-2 > 0.95) while the kinetic data was best described using the pseudo second-order kinetic model (R-2 > 0.99). Cr(III) was successfully recovered from the bacterial biomass using either 1 M of CH3COOH, HNO3 or H2SO4 with 90% recovery. TEM and FTIR suggested the involvement of amine, carboxyl, hydroxyl and phosphate groups during the biosorption of Cr(III) onto the cell surface of A. haemolyticus. A. haemolyticus was also capable to remove 79.87 mg g(-1) Cr(III) (around 22.75%) from raw leather tanning wastewater. This study demonstrates the potential of using A. haemolyticus as biosorbent to remove Cr(III) from both synthetic and industrial wastewater

    Evaluation of the combined Cr(VI) removal capacity of sawdust and sawdust-immobilized acinetobacter haemolyticus supplied with brown sugar

    No full text
    The purpose of this study is to evaluate the combined Cr(VI) removal capacities of nonliving (untreated rubber wood sawdust, URWS) and living biomass (URWS-immobilized Acinetobacter haemolyticus) in a continuous laboratory scale downward-flow two column system. Synthetic solutions of Cr(VI) between 237 and 320 mg L(-1) were mixed with 1 g L(-1) brown sugar in a nonsterile condition. Final Cr(VI) of between 0 and 1.6 mg L(-1) indicate a Cr(VI) removal capacity of 99.8-100%. The bacterial Cr(VI) reduction capacity increased with column length. This study shows the feasibility of using the two column system consisting of living (bacteria) and nonliving biomass (URWS) as a useful alternative treatment for Cr(VI) contamination in the aqueous system
    corecore