31 research outputs found

    Kinetics of CheY phosphorylation by small molecule phosphodonors

    Get PDF
    AbstractThe chemotaxis response regulator CheY can acquire phosphoryl groups either from its associated autophosphorylating protein kinase, CheA, or from small phosphodonor molecules such as acetyl phosphate. We report a stopped-flow kinetic analysis of CheY phosphorylation by acetyl phosphate. The results show that CheY has a very low affinity for this phosphodonor (Ks≫0.1 M), consistent with the conclusion that, whereas CheY provides catalytic functions for the phosphotransfer reaction, the CheA kinase may act simply to increase the effective phosphodonor concentration at the CheY active site

    Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits

    No full text
    Phosphoprotein phosphatase 2A (PP2A) is a major phosphoserine/threonine protein phosphatase in all eukaryotes. It has been isolated as a heterotrimeric holoenzyme composed of a 65 kDa A subunit, which serves as a scaffold for the association of the 36 kDa catalytic C subunit, and a variety of B subunits that control phosphatase specificity. The C subunit is reversibly methyl esterified by specific methyltransferase and methylesterase enzymes at a completely conserved C-terminal leucine residue. Here we show that methylation plays an essential role in promoting PP2A holoenzyme assembly and that demethylation has an opposing effect. Changes in methylation indirectly regulate PP2A phosphatase activity by controlling the binding of regulatory B subunits to AC dimers

    Bacterial chemotaxis

    Get PDF

    Bacterial chemotaxis

    No full text

    Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo

    No full text
    The phosphoprotein phosphatase 2A (PP2A) catalytic subunit contains a methyl ester on its C-terminus, which in mammalian cells is added by a specific carboxyl methyltransferase and removed by a specific carboxyl methylesterase. We have identified genes in yeast that show significant homology to human carboxyl methyltransferase and methylesterase. Extracts of wild-type yeast cells contain carboxyl methyltransferase activity, while extracts of strains deleted for one of the methyltransferase genes, PPM1, lack all activity. Mutation of PPM1 partially disrupts the PP2A holoenzyme in vivo and ppm1 mutations exhibit synthetic lethality with mutations in genes encoding the B or B′ regulatory subunit. Inactivation of PPM1 or overexpression of PPE1, the yeast gene homologous to bovine methylesterase, yields phenotypes similar to those observed after inactivation of either regulatory subunit. These phenotypes can be reversed by overexpression of the B regulatory subunit. These results demonstrate that Ppm1 is the sole PP2A methyltransferase in yeast and that its activity is required for the integrity of the PP2A holoenzyme

    AGSE: A Novel Grape Seed Extract Enriched for PP2A Activating Flavonoids That Combats Oxidative Stress and Promotes Skin Health

    No full text
    Environmental stimuli attack the skin daily resulting in the generation of reactive oxygen species (ROS) and inflammation. One pathway that regulates oxidative stress in skin involves Protein Phosphatase 2A (PP2A), a phosphatase which has been previously linked to Alzheimer’s Disease and aging. Oxidative stress decreases PP2A methylation in normal human dermal fibroblasts (NHDFs). Thus, we hypothesize agents that increase PP2A methylation and activity will promote skin health and combat aging. To discover novel inhibitors of PP2A demethylation activity, we screened a library of 32 natural botanical extracts. We discovered Grape Seed Extract (GSE), which has previously been reported to have several benefits for skin, to be the most potent PP2A demethylating extract. Via several fractionation and extraction steps we developed a novel grape seed extract called Activated Grape Seed Extract (AGSE), which is enriched for PP2A activating flavonoids that increase potency in preventing PP2A demethylation when compared to commercial GSE. We then determined that 1% AGSE and 1% commercial GSE exhibit distinct gene expression profiles when topically applied to a 3D human skin model. To begin to characterize AGSE’s activity, we investigated its antioxidant potential and demonstrate it reduces ROS levels in NHDFs and cell-free assays equal to or better than Vitamin C and E. Moreover, AGSE shows anti-inflammatory properties, dose-dependently inhibiting UVA, UVB and chemical-induced inflammation. These results demonstrate AGSE is a novel, multi-functional extract that modulates methylation levels of PP2A and supports the hypothesis of PP2A as a master regulator for oxidative stress signaling and aging in skin
    corecore