2,188 research outputs found
On the frequency of close binary systems among very low-mass stars and brown dwarfs
We have used Monte Carlo simulation techniques and published radial velocity
surveys to constrain the frequency of very low-mass star (VLMS) and brown dwarf
(BD) binary systems and their separation (a) distribution. Gaussian models for
the separation distribution with a peak at a = 4 au and 0.6 =< sigma(log(a/au))
=< 1.0 correctly predict the number of observed binaries, yielding a close
(a<2.6 au) binary frequency of 17-30 per cent and an overall VLMS/BD binary
frequency of 32-45 per cent. We find that the available N-body models of
VLMS/BD formation from dynamically decaying protostellar multiple systems are
excluded at >99 per cent confidence because they predict too few close binary
VLMS/BDs. The large number of close binaries and high overall binary frequency
are also very inconsistent with recent smoothed particle hydrodynamical
modelling and argue against a dynamical origin for VLMS/BDs.Comment: Accepted for publication in MNRAS letters. 5 pages, 2 figure
An XMM-Newton observation of the young open cluster NGC 2547: coronal activity at 30 Myr
We report XMM-Newton observations of the young open cluster NGC 2547 which
allow us to characterise coronal activity in solar-type stars at an age of 30
Myr. X-ray emission peaks among G-stars at luminosities (0.3-3keV) of
Lx~10^{30.5} erg/s and declines to Lx<=10^{29.0} erg/s among M-stars. Coronal
spectra show evidence for multi-temperature differential emission measures and
low coronal metal abundances (Z~0.3). The G- and K-type stars follow the same
relationship between X-ray activity and Rossby number established in older
clusters and field stars, although most solar-type stars in NGC 2547 exhibit
saturated/super-saturated X-ray activity levels. Median levels of Lx and
Lx/Lbol in the solar-type stars of NGC 2547 are similar to T-Tauri stars of the
Orion Nebula cluster (ONC), but an order of magnitude higher than in the older
Pleiades. The spread in X-ray activity levels among solar-type stars in NGC
2547 is much smaller than in older or younger clusters. Coronal temperatures
increase with Lx, Lx/Lbol and surface X-ray flux. Active solar-type stars in
NGC 2547 have coronal temperatures between those in the ONC and the most active
older ZAMS stars. A flaring rate (for total flare energies [0.3-3keV] >10^{34}
erg) of 1 every 350^{+350}_{-120} ks was found for solar-type stars, similar to
rates found in the ONC and Pleiades. Comparison with ROSAT HRI data taken 7
years previously reveals that only 10-15 percent of solar-type stars or stars
with Lx>3x10^{29} erg/s exhibit X-ray variability by more than a factor of two.
The similar levels of X-ray activity and rate of occurrence for large flares in
NGC 2547 and the ONC demonstrate that the X-ray radiation environment around
young solar-type stars remains relatively constant over their first 30 Myr
(abridged).Comment: Accepted for publication in MNRAS. Electronic tables available from
the autho
Pre-main-sequence isochrones -- II. Revising star and planet formation timescales
We have derived ages for 13 young (<30 Myr) star-forming regions and find
they are up to a factor two older than the ages typically adopted in the
literature. This result has wide-ranging implications, including that
circumstellar discs survive longer (~10-12 Myr) and that the average Class I
lifetime is greater (~1 Myr) than currently believed.
For each star-forming region we derived two ages from colour-magnitude
diagrams. First we fitted models of the evolution between the zero-age
main-sequence and terminal-age main-sequence to derive a homogeneous set of
main-sequence ages, distances and reddenings with statistically meaningful
uncertainties. Our second age for each star-forming region was derived by
fitting pre-main-sequence stars to new semi-empirical model isochrones. For the
first time (for a set of clusters younger than 50 Myr) we find broad agreement
between these two ages, and since these are derived from two distinct mass
regimes that rely on different aspects of stellar physics, it gives us
confidence in the new age scale. This agreement is largely due to our adoption
of empirical colour-Teff relations and bolometric corrections for
pre-main-sequence stars cooler than 4000 K.
The revised ages for the star-forming regions in our sample are: ~2 Myr for
NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon
Nebula; M 8), and NGC 2244 (Rosette Nebula); ~6 Myr for {\sigma} Ori, Cep OB3b,
and IC 348; ~10 Myr for {\lambda} Ori (Collinder 69); ~11 Myr for NGC 2169; ~12
Myr for NGC 2362; ~13 Myr for NGC 7160; ~14 Myr for {\chi} Per (NGC 884); and
~20 Myr for NGC 1960 (M 36).Comment: 28 pages, 18 figures, 34 tables, accepted for publication in MNRAS.
All photometric catalogues presented in this paper are available online at
the Cluster Collaboration homepage
http://www.astro.ex.ac.uk/people/timn/Catalogues
A lithium depletion boundary age of 22 Myr for NGC 1960
We present a deep Cousins RI photometric survey of the open cluster NGC 1960,
complete to R_C \simeq 22, I_C \simeq 21, that is used to select a sample of
very low-mass cluster candidates. Gemini spectroscopy of a subset of these is
used to confirm membership and locate the age-dependent "lithium depletion
boundary" (LDB) --the luminosity at which lithium remains unburned in its
low-mass stars. The LDB implies a cluster age of 22 +/-4 Myr and is quite
insensitive to choice of evolutionary model. NGC 1960 is the youngest cluster
for which a LDB age has been estimated and possesses a well populated upper
main sequence and a rich low-mass pre-main sequence. The LDB age determined
here agrees well with precise age estimates made for the same cluster based on
isochrone fits to its high- and low-mass populations. The concordance between
these three age estimation techniques, that rely on different facets of stellar
astrophysics at very different masses, is an important step towards calibrating
the absolute ages of young open clusters and lends confidence to ages
determined using any one of them.Comment: Accepted for publication in MNRA
The Li Overabundance of J37: Diffusion or Accretion?
In September 2002 the discovery of a super Li-rich F-dwarf (J37) in NGC 6633,
an iron poor analogue of the better studied Hyades and Praecepe open clusters,
was announced. This unique star was thought to be the smoking gun for the
action of diffusion, models of which predict a narrow "Li-peak" at
approximately the correct temperature. However, with more detailed studies into
J37s abundance pattern this star provides firm evidence for the accretion of
planetesimals or other material from the circumstellar environment of new born
stars.
Thanks to the specific predictions made about the behaviour of Be abundances,
(the most striking of which being no Be in super-Li-rich dwarfs subject to
diffusion) the opposing diffusion/accretion predictions can be tested.
Initial modelling of the Be line indicates that J37 is as Be rich as it is Li
rich; log N(Be) = 2.25 +/- 0.25, and so is broadly consistent with an
accretion-fuelled enhancement. However, that both Li and Be are enhanced by
much more than the iron-peak elements (as determined in previous studies)
suggests that diffusion also plays a role in increasing the abundances of Li
and Be specifically.
Furthermore, a new data set from the UVES/UT2 combination has allowed the
elemental abundance of Iron to be measured, and the set of preliminary stellar
parameters determined; Teff ~ 7340 K, log g ~ 4.1, microturbulence ~ 4.3 km/s,
[Fe/H] ~ 0.50. This again provides distinct evidence for the effects of
accretion in J37 and requires a new synthesis of the Be doublet.Comment: 5 pages, 2 figures. Poster presented at IAU Symposium 224 "The A Star
Puzzle", 7-13 July 2004, Poprad, Slovaki
Elements in Scenario-Based Simulation Associated with Nursing Studentsâ Self-Confidence and Satisfaction: A Cross-Sectional Study
Aim: To identify elements in scenarioâbased simulation associated with nursing students' satisfaction with the simulation activity and selfâconfidence in managing the simulated patient situation. The study will provide insight to improve the use of simulation as a learning strategy.
Design: A crossâsectional study.
Method: The Student Satisfaction and SelfâConfidence in Learning scale was used as the outcome measure to identify associations with elements of the Simulation Design Scale and the Educational Practices Questionnaire scale after scenarioâbased simulation using patient simulators. Firstâyear nursing students at a university college in Norway (N = 202) were invited to participate and (N = 187) responded to the questionnaires.
Results: The mean scores for selfâconfidence and satisfaction were 4.16 and 4.57, respectively. In the final multiple linear regression analysis, active learning was associated with satisfaction with the simulation activity, while clear objectives and active learning were associated with selfâconfidence in managing the simulated patient situation.publishedVersio
Beryllium Enhancement as Evidence for Accretion in a Lithium-Rich F Dwarf
The early F dwarf star ``J37'' in the open cluster NGC6633 shows an unusual
pattern of photospheric abundances, including an order of magnitude enhancement
of lithium and iron-peak elements, but an under-abundance of carbon. As a
consequence of its thin convection zone these anomalies have been attributed to
either radiative diffusion or the accretion of hydrogen-depleted material. By
comparing high resolution VLT/UVES spectra of J37 (and other F stars in NGC
6633) with syntheses of the Be ii doublet region at 3131 Ang, we establish that
J37 also has a Be abundance (A(Be)=3.0+/-0.5) that is at least ten times the
cosmic value. This contradicts radiative diffusion models that produce a Li
over-abundance, as they also predict photospheric Be depletion. Instead, since
Be is a highly refractory element, it supports the notion that J37 is the first
clear example of a star that has accreted volatile-depleted material with a
composition similar to chondritic meteorites, although some diffusion may be
necessary to explain the low C and O abundances.Comment: Accepted for publication in MNRAS letters, 5 page
No evidence for intense, cold accretion onto YSOs from measurements of Li in T-Tauri stars
We have used medium resolution spectra to search for evidence that
proto-stellar objects accrete at high rates during their early 'assembly
phase'. Models predict that depleted lithium and reduced luminosity in T-Tauri
stars are key signatures of 'cold' high-rate accretion occurring early in a
star's evolution.
We found no evidence in 168 stars in NGC 2264 and the Orion Nebula Cluster
for strong lithium depletion through analysis of veiling corrected 6708
angstrom lithium spectral line strengths. This suggests that 'cold' accretion
at high rates (M_dot > 5 x 10-4 M_sol yr-1) occurs in the assembly phase of
fewer than 0.5 per cent of 0.3 < M < 1.9 M_sol stars.
We also find that the dispersion in the strength of the 6708 angstrom lithium
line might imply an age spread that is similar in magnitude to the apparent age
spread implied by the luminosity dispersion seen in colour magnitude diagrams.
Evidence for weak lithium depletion (< 10 per cent in equivalent width) that is
correlated with luminosity is also apparent, but we are unable to determine
whether age spreads or accretion at rates less than 5 x 10-4 M_sol yr-1 are
responsible.Comment: 13 pages, 10 figures; Accepted for publication in Monthly Notices of
the Royal Astronomical Society, 2013 June 0
WIYN/Hydra Detection of Lithium Depletion in F Stars of the Young Open Cluster M35 and Implications for the Development of the Lithium Gap
We report discovery of significant depletion of Li on the surfaces of F dwarf
stars in the 150-Myr-old open cluster M35, analagous to a feature in the
700-Myr-old Hyades cluster that has been referred to as the ``Li gap.'' We have
caught the gap in the act of forming: using high resolution, high S/N,
WIYN/Hydra observations, we detect Li in all but a few M35 F stars; the maximum
depletion lies at least 0.6-0.8 dex below minimally depleted (or undepleted)
stars. The M35 Li depletion region, a) is quite wide, with clear depletion seen
from 6000K to 6700K or hotter; b) shows a significant dispersion in Li
abundance at all T_eff, even with stars of the same T_eff; and c) contains
undepleted stars (as well as depleted ones) in the (narrow) classical Hyades
gap region, which itself shows no undepleted stars. All of these M35 Li
depletion properties support rotationally-induced slow mixing as the primary
physical mechanism that forms the gap, and argues against other proposed
mechanisms, particularly diffusion and steady main sequence mass loss. When
viewed in the context of the M35 Li depletion properties, the Hyades Li gap may
well be wider than is usually recognized.Comment: 14 Pages, 3 figures. Accepted to ApJ Letter
Competing Ordered Phases in URu2Si2: Hydrostatic Pressure and Re-substitution
A persistent kink in the pressure dependence of the \hidden order" (HO)
transition temperature of URu2-xRexSi2 is observed at a critical pressure Pc=15
kbar for 0 < x < 0.08. In URu2Si2, the kink at Pc is accompanied by the
destruction of superconductivity; a change in the magnitude of a spin
excitation gap, determined from electrical resistivity measurements; and a
complete gapping of a portion of the Fermi surface (FS), inferred from a change
in scattering and the competition between the HO state and superconductivity
for FS fraction
- âŠ