2,018 research outputs found

    A Bayesian Approach to Comparing Cosmic Ray Energy Spectra

    Full text link
    A common problem in ultra-high energy cosmic ray physics is the comparison of energy spectra. The question is whether the spectra from two experiments or two regions of the sky agree within their statistical and systematic uncertainties. We develop a method to directly compare energy spectra for ultra-high energy cosmic rays from two different regions of the sky in the same experiment without reliance on agreement with a theoretical model of the energy spectra. The consistency between the two spectra is expressed in terms of a Bayes factor, defined here as the ratio of the likelihood of the two-parent source hypothesis to the likelihood of the one-parent source hypothesis. Unlike other methods, for example chi^2 tests, the Bayes factor allows for the calculation of the posterior odds ratio and correctly accounts for non-Gaussian uncertainties. The latter is particularly important at the highest energies, where the number of events is very small.Comment: 22 pages, 10 figures, accepted for publication in Ap

    Comparison of dogs treated for primary immune-mediated hemolytic anemia in Tuscany, Italy and Texas, USA

    Get PDF
    This retrospective study compared clinical characteristics between dogs treated for IMHA by veterinary teaching hospitals in Tuscany, Italy and Texas, USA between 2010 and 2018

    Simulating Ability: Representing Skills in Games

    Full text link
    Throughout the history of games, representing the abilities of the various agents acting on behalf of the players has been a central concern. With increasingly sophisticated games emerging, these simulations have become more realistic, but the underlying mechanisms are still, to a large extent, of an ad hoc nature. This paper proposes using a logistic model from psychometrics as a unified mechanism for task resolution in simulation-oriented games

    Exact steady-state velocity of ratchets driven by random sequential adsorption

    Full text link
    We solve the problem of discrete translocation of a polymer through a pore, driven by the irreversible, random sequential adsorption of particles on one side of the pore. Although the kinetics of the wall motion and the deposition are coupled, we find the exact steady-state distribution for the gap between the wall and the nearest deposited particle. This result enables us to construct the mean translocation velocity demonstrating that translocation is faster when the adsorbing particles are smaller. Monte-Carlo simulations also show that smaller particles gives less dispersion in the ratcheted motion. We also define and compare the relative efficiencies of ratcheting by deposition of particles with different sizes and we describe an associated "zone-refinement" process.Comment: 11 pages, 4 figures New asymptotic result for low chaperone density added. Exact translocation velocity is proportional to (chaperone density)^(1/3

    Ignorance based inference of optimality in thermodynamic processes

    Full text link
    We derive ignorance based prior distribution to quantify incomplete information and show its use to estimate the optimal work characteristics of a heat engine.Comment: Latex, 10 pages, 3 figure

    Consistency of the Shannon entropy in quantum experiments

    Full text link
    The consistency of the Shannon entropy, when applied to outcomes of quantum experiments, is analysed. It is shown that the Shannon entropy is fully consistent and its properties are never violated in quantum settings, but attention must be paid to logical and experimental contexts. This last remark is shown to apply regardless of the quantum or classical nature of the experiments.Comment: 12 pages, LaTeX2e/REVTeX4. V5: slightly different than the published versio

    Present and future evidence for evolving dark energy

    Get PDF
    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, LambdaCDM is currently favoured as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.Comment: 10 pages RevTex4, 3 figures included. Minor changes to match version accepted by PR

    Direct reconstruction of the quintessence potential

    Get PDF
    We describe an algorithm which directly determines the quintessence potential from observational data, without using an equation of state parametrisation. The strategy is to numerically determine observational quantities as a function of the expansion coefficients of the quintessence potential, which are then constrained using a likelihood approach. We further impose a model selection criterion, the Bayesian Information Criterion, to determine the appropriate level of the potential expansion. In addition to the potential parameters, the present-day quintessence field velocity is kept as a free parameter. Our investigation contains unusual model types, including a scalar field moving on a flat potential, or in an uphill direction, and is general enough to permit oscillating quintessence field models. We apply our method to the `gold' Type Ia supernovae sample of Riess et al. (2004), confirming the pure cosmological constant model as the best description of current supernovae luminosity-redshift data. Our method is optimal for extracting quintessence parameters from future data.Comment: 9 pages RevTeX4 with lots of incorporated figure

    Tidal dissipation in rotating giant planets

    Full text link
    [Abridged] Tides may play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. We treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets. In cases of interest, the tidal forcing frequencies are comparable to the spin frequency of the planet but small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, while any radiative regions support generalized Hough waves. We present illustrative numerical calculations of the tidal dissipation rate and argue that inertial waves provide a natural avenue for efficient tidal dissipation in most cases of interest. The resulting value of Q depends in a highly erratic way on the forcing frequency, but we provide evidence that the relevant frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number. In short-period extrasolar planets, if the stellar irradiation of the planet leads to the formation of a radiative outer layer that supports generalized Hough modes, the tidal dissipation rate can be enhanced through the excitation and damping of these waves. These dissipative mechanisms offer a promising explanation of the historical evolution and current state of the Galilean satellites as well as the observed circularization of the orbits of short-period extrasolar planets.Comment: 74 pages, 12 figures, submitted to The Astrophysical Journa

    Non-Compositional Term Dependence for Information Retrieval

    Full text link
    Modelling term dependence in IR aims to identify co-occurring terms that are too heavily dependent on each other to be treated as a bag of words, and to adapt the indexing and ranking accordingly. Dependent terms are predominantly identified using lexical frequency statistics, assuming that (a) if terms co-occur often enough in some corpus, they are semantically dependent; (b) the more often they co-occur, the more semantically dependent they are. This assumption is not always correct: the frequency of co-occurring terms can be separate from the strength of their semantic dependence. E.g. "red tape" might be overall less frequent than "tape measure" in some corpus, but this does not mean that "red"+"tape" are less dependent than "tape"+"measure". This is especially the case for non-compositional phrases, i.e. phrases whose meaning cannot be composed from the individual meanings of their terms (such as the phrase "red tape" meaning bureaucracy). Motivated by this lack of distinction between the frequency and strength of term dependence in IR, we present a principled approach for handling term dependence in queries, using both lexical frequency and semantic evidence. We focus on non-compositional phrases, extending a recent unsupervised model for their detection [21] to IR. Our approach, integrated into ranking using Markov Random Fields [31], yields effectiveness gains over competitive TREC baselines, showing that there is still room for improvement in the very well-studied area of term dependence in IR
    • …
    corecore