30 research outputs found

    The Core- and Pan-Genomes of Photosynthetic Prokaryotes

    Get PDF

    Metabolic flexibility revealed in the genome of the cyst-forming Ξ±-1 proteobacterium Rhodospirillum centenum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhodospirillum centenum </it>is a photosynthetic non-sulfur purple bacterium that favors growth in an anoxygenic, photosynthetic N<sub>2</sub>-fixing environment. It is emerging as a genetically amenable model organism for molecular genetic analysis of cyst formation, photosynthesis, phototaxis, and cellular development. Here, we present an analysis of the genome of this bacterium.</p> <p>Results</p> <p><it>R. centenum </it>contains a singular circular chromosome of 4,355,548 base pairs in size harboring 4,105 genes. It has an intact Calvin cycle with two forms of Rubisco, as well as a gene encoding phosphoenolpyruvate carboxylase (PEPC) for mixotrophic CO<sub>2 </sub>fixation. This dual carbon-fixation system may be required for regulating internal carbon flux to facilitate bacterial nitrogen assimilation. Enzymatic reactions associated with arsenate and mercuric detoxification are rare or unique compared to other purple bacteria. Among numerous newly identified signal transduction proteins, of particular interest is a putative bacteriophytochrome that is phylogenetically distinct from a previously characterized <it>R. centenum </it>phytochrome, Ppr. Genes encoding proteins involved in chemotaxis as well as a sophisticated dual flagellar system have also been mapped.</p> <p>Conclusions</p> <p>Remarkable metabolic versatility and a superior capability for photoautotrophic carbon assimilation is evident in <it>R. centenum</it>.</p

    Full Sequence and Comparative Analysis of the Plasmid pAPEC-1 of Avian Pathogenic E. coli Ο‡7122 (O78∢K80∢H9)

    Get PDF
    (APEC), are very diverse. They cause a complex of diseases in Human, animals, and birds. Even though large plasmids are often associated with the virulence of ExPEC, their characterization is still in its infancy., are also present in the sequence of pAPEC-1. The comparison of the pAPEC-1 sequence with the two available plasmid sequences reveals more gene loss and reorganization than previously appreciated. The presence of pAPEC-1-associated genes is assessed in human ExPEC by PCR. Many patterns of association between genes are found.The pathotype typical of pAPEC-1 was present in some human strains, which indicates a horizontal transfer between strains and the zoonotic risk of APEC strains. ColV plasmids could have common virulence genes that could be acquired by transposition, without sharing genes of plasmid function

    An Exhaustive Genome Assembly Algorithm Using K-Mers to Indirectly Perform N-Squared Comparisons in O(N)

    No full text
    We present an algorithm that indirectly makes N 2 sequence comparisons in O(N) with respect to the size of the genome. This algorithm is very applicable in assembling whole genomes from the thousands of DNA sequence fragments that are generated in shotgun sequencing. First, we assume that fragments that share k-mers should overlap in the final assembly. We then catalog all k-mers that exist in the shotgun library and infer links between fragments that share k-mers. These links are then used to represent edges in a graph. This graph is generated in O(N) yet represents the result of comparing every fragment to every other fragment. 1

    Evidence for Multiple Recent Host Species Shifts among the Ranaviruses (Family Iridoviridae)β–Ώ †

    No full text
    Members of the genus Ranavirus (family Iridoviridae) have been recognized as major viral pathogens of cold-blooded vertebrates. Ranaviruses have been associated with amphibians, fish, and reptiles. At this time, the relationships between ranavirus species are still unclear. Previous studies suggested that ranaviruses from salamanders are more closely related to ranaviruses from fish than they are to ranaviruses from other amphibians, such as frogs. Therefore, to gain a better understanding of the relationships among ranavirus isolates, the genome of epizootic hematopoietic necrosis virus (EHNV), an Australian fish pathogen, was sequenced. Our findings suggest that the ancestral ranavirus was a fish virus and that several recent host shifts have taken place, with subsequent speciation of viruses in their new hosts. The data suggesting several recent host shifts among ranavirus species increase concern that these pathogens of cold-blooded vertebrates may have the capacity to cross numerous poikilothermic species barriers and the potential to cause devastating disease in their new hosts
    corecore