10 research outputs found

    Retinoid-Induced Expression and Activity of an Immediate Early Tumor Suppressor Gene in Vascular Smooth Muscle Cells

    Get PDF
    Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE) located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β) in cultured smooth muscle cells (SMC) as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA) regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype

    No full text
    Cerebral angiopathy contributes to cognitive decline and dementia in Alzheimer's disease (AD) through cerebral blood flow (CBF) reductions and dysregulation. We report vascular smooth muscle cells (VSMC) in small pial and intracerebral arteries, which are critical for CBF regulation, express in AD high levels of serum response factor (SRF) and myocardin (MYOCD), two interacting transcription factors that orchestrate a VSMC-differentiated phenotype. Consistent with this finding, AD VSMC overexpressed several SRF-MYOCD-regulated contractile proteins and exhibited a hypercontractile phenotype. MYOCD overexpression in control human cerebral VSMC induced an AD-like hypercontractile phenotype and diminished both endothelial-dependent and -independent relaxation in the mouse aorta ex vivo. In contrast, silencing SRF normalized contractile protein content and reversed a hypercontractile phenotype in AD VSMC. MYOCD in vivo gene transfer to mouse pial arteries increased contractile protein content and diminished CBF responses produced by brain activation in wild-type mice and in two AD models, the Dutch/Iowa/Swedish triple mutant human amyloid β-peptide (Aβ)-precursor protein (APP)- expressing mice and APPsw(+/−) mice. Silencing Srf had the opposite effect. Expression of SRF did not change in VSMC subjected to Alzheimer's neurotoxin, Aβ. Thus, SRF-MYOCD overexpression in small cerebral arteries appears to initiate independently of Aβ a pathogenic pathway mediating arterial hypercontractility and CBF dysregulation, which are associated with Alzheimer's dementia

    Overexpression of A-kinase anchoring protein 12A activates sterol regulatory element binding protein-2 and enhances cholesterol efflux in hepatic cells

    No full text
    A-kinase anchoring protein 12 (AKAP12) is known to function as a scaffold protein and as a putative tumor suppressor. However, little is known about the biological role of AKAP12 in hepatic cells. In this study, we performed micro-array analysis to identify the downstream pathway of AKAP12A, and found that AKAP12A overexpression up-regulates the expressions of several cholesterol-associated genes including HMG-CoA reductase and LDL receptor, which have been reported to be controlled by sterol regulatory element binding protein-2 (SREBP-2). It was found that AKAP12A activates SREBP-2 in hepatic cells, as demonstrated by the presence of its cleavage product, whereas the activation of sterol regulatory element binding protein-1 was not remarkably changed. Moreover, AKAP12A-induced SREBP-2 activation was found to depend on SREBP cleavage-activating protein (SCAP), as inhibition of SCAP by RNAi or sterols blocked SREBP-2 activation in response to AKAP12A overexpression. Interestingly, the hydrophobic amine U18666A caused dramatic movement of AKAP12A from the plasma membrane to cytosol and lysosomal membranes. Moreover, cholesterol depletion from the plasma membrane (using methyl-p-cyclodextrin) caused a shift of AKAP12A from the plasma membrane to the cytoplasm. Cholesterol binding assay revealed that the N-terminal region of AKAP12A binds directly to cholesterol in vitro. Furthermore. AKAP12A overexpression enhanced [(3)H]-cholesterol efflux to extracellular acceptors, suggesting that AKAP12A may activate SREBP-2 by increasing cholesterol efflux. In conclusion, the present study suggests that AKAP12A is a novel regulator of cellular cholesterol metabolism. (C) 2008 Elsevier Ltd. All rights reserved.This work was supported in part by grants from the Ministry of Science & Technology of Korea through theNational Research Laboratory Program for Cancer Epigenetics, by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (#KRF-2004- 217-C00011), and by BK21 Project for Medicine, Dentistry, and Pharmacy
    corecore