117 research outputs found

    p27KIP1 Deletions in Childhood Acute Lymphoblastic Leukemia

    Get PDF
    AbstractThe p27KIP1 gene, which encodes a cyclin-dependent kinase (CDK) inhibitor, has been assigned to chromosome band 12p12, a region often affected by cytogenetically apparent deletions or translocations in childhood acute lymphoblastic leukemia (ALL). As described here, fluorescence in situ hybridization (FISH) analysis of 35 primary ALL samples with cytogenetic evidence of 12p abnormalities revealed hemizygous deletions of p27KIP1 in 29 cases. Further analysis of 19 of these cases with two additional gene-specific probes from the 12p region (hematopoietic cell phosphatase, HCP and cyclin D2, CCND2) showed that p27KIP1 is located more proximally on the short arm of chromosome 12 and is deleted more frequently than either HCP or CCND2. Of 16 of these cases with hemizygous deletion of p27KIP1, only eight showed loss of HCP or CCND2, whereas loss of either of the latter two loci was uniformly associated with loss of p27KIP1. Missense mutations or mutations leading to premature termination codons were not detected in the coding sequences of the retained p27KIP1 alleles in any of the 16 ALL cases examined, indicating a lack of homozygous inactivation. By Southern blot analysis, one case of primary T-cell ALL had hemizygous loss of a single p27KIP1 allele and a 34.5-kb deletion, including the second coding exon of the other allele. Despite homozygous inactivation of p27KIP1 in this case, our data suggest that haploinsufficiency for p27KIP1 is the primary consequence of 12p chromosomal deletions in childhood ALL. The oncogenic role of reduced, but not absent, levels of p27KIP1 is supported by recent studies in murine models and evidence that this protein not only inhibits the activity of complexes containing CDK2 and cyclin E, but also promotes the assembly and catalytic activity of CDK4 or CDK6 in complexes with cyclin D

    A High-Throughput Screen Indicates Gemcitabine and JAK Inhibitors May be Useful for Treating Pediatric AML

    Get PDF
    Improvement in survival has been achieved for children and adolescents with AML but is largely attributed to enhanced supportive care as opposed to the development of better treatment regimens. High risk subtypes continue to have poor outcomes with event free survival rates \u3c 40% despite the use of high intensity chemotherapy in combination with hematopoietic stem cell transplant. Here we combine high-throughput screening, intracellular accumulation assays, and in vivo efficacy studies to identify therapeutic strategies for pediatric AML. We report therapeutics not currently used to treat AML, gemcitabine and cabazitaxel, have broad anti-leukemic activity across subtypes and are more effective relative to the AML standard of care, cytarabine, both in vitro and in vivo. JAK inhibitors are selective for acute megakaryoblastic leukemia and significantly prolong survival in multiple preclinical models. Our approach provides advances in the development of treatment strategies for pediatric AML

    MRD in AML: it's time to face the FACS

    No full text

    How I treat pediatric acute myeloid leukemia

    No full text
    Treatment outcomes for pediatric patients with acute myeloid leukemia (AML) have continued to lag behind outcomes reported for children with acute lymphoblastic leukemia (ALL), in part because of the heterogeneity of the disease, a paucity of targeted therapies, and the relatively slow development of immunotherapy compared with ALL. In addition, we have reached the limits of treatment intensity, and, even with outstanding supportive care, it is highly unlikely that further intensification of conventional chemotherapy alone will impact relapse rates. However, comprehensive genomic analyses and a more thorough characterization of the leukemic stem cell have provided insights that should lead to tailored and more effective therapies in the near future. In addition, new therapies are finally emerging, including the BCL-2 inhibitor venetoclax, CD33- and CD123-directed chimeric antigen receptor T-cell therapy, CD123-directed antibody therapy, and menin inhibitors. Here, we present 4 cases to illustrate some of the controversies regarding the optimal treatment of children with newly diagnosed or relapsed AML

    Global Proteomic Profiling of Pediatric AML: A Pilot Study

    No full text
    Acute Myeloid Leukemia (AML) is a heterogeneous disease with several recurrent cytogenetic abnormalities. Despite genomics and transcriptomics profiling efforts to understand AML’s heterogeneity, studies focused on the proteomic profiles associated with pediatric AML cytogenetic features remain limited. Furthermore, the majority of biological functions within cells are operated by proteins (i.e., enzymes) and most drugs target the proteome rather than the genome or transcriptome, thus, highlighting the significance of studying proteomics. Here, we present our results from a pilot study investigating global proteomic profiles of leukemic cells obtained at diagnosis from 16 pediatric AML patients using a robust TMT-LC/LC-MS/MS platform. The proteome profiles were compared among patients with or without core binding factor (CBF) translocation indicated by a t(8;21) or inv(16) cytogenetic abnormality, minimal residual disease status at the end of the first cycle of chemotherapy (MRD1), and in vitro chemosensitivity of leukemic cells to cytarabine (Ara-C LC50). Our results established proteomic differences between CBF and non-CBF AML subtypes, providing insights to AML subtypes physiology, and identified potential druggable proteome targets such as THY1 (CD90), NEBL, CTSF, COL2A1, CAT, MGLL (MAGL), MACROH2A2, CLIP2 (isoform 1 and 2), ANPEP (CD13), MMP14, and AK5
    • …
    corecore