476 research outputs found
Recommended from our members
Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear
The hyperpolarization-activated current, Ih, is carried by members of the Hcn channel family and contributes to resting potential and firing properties in excitable cells of various systems, including the auditory system. Ih has been identified in spiral ganglion neurons (SGNs); however, its molecular correlates and their functional contributions have not been well characterized. To investigate the molecular composition of the channels that carry Ih in SGNs, we examined Hcn mRNA harvested from spiral ganglia of neonatal and adult mice using quantitative RT-PCR. The data indicate expression of Hcn1, Hcn2, and Hcn4 subunits in SGNs, with Hcn1 being the most highly expressed at both stages. To investigate the functional contributions of HCN subunits, we used the whole-cell, tight-seal technique to record from wild-type SGNs and those deficient in Hcn1, Hcn2, or both. We found that HCN1 is the most prominent subunit contributing to Ih in SGNs. Deletion of Hcn1 resulted in reduced conductance (Gh), slower activation kinetics (Ï„fast), and hyperpolarized half-activation (V1/2) potentials. We demonstrate that Ih contributes to SGN function with depolarized resting potentials, depolarized sag and rebound potentials, accelerated rebound spikes after hyperpolarization, and minimized jitter in spike latency for small depolarizing stimuli. Auditory brainstem responses of Hcn1-deficient mice showed longer latencies, suggesting that HCN1-mediated Ih is critical for synchronized spike timing in SGNs. Together, our data indicate that Ih contributes to SGN membrane properties and plays a role in temporal aspects of signal transmission between the cochlea and the brain, which are critical for normal auditory function
Recommended from our members
Mechanotransduction and hyperpolarization-activated currents contribute to spontaneous activity in mouse vestibular ganglion neurons
The hyperpolarization-activated, cyclic nucleotide–sensitive current, Ih, is present in vestibular hair cells and vestibular ganglion neurons, and is required for normal balance function. We sought to identify the molecular correlates and functional relevance of Ih in vestibular ganglion neurons. Ih is carried by channels consisting of homo- or heteromeric assemblies of four protein subunits from the Hcn gene family. The relative expression of Hcn1–4 mRNA was examined using a quantitative reverse transcription PCR (RT-PCR) screen. Hcn2 was the most highly expressed subunit in vestibular neuron cell bodies. Immunolocalization of HCN2 revealed robust expression in cell bodies of all vestibular ganglion neurons. To characterize Ih in vestibular neuron cell bodies and at hair cell–afferent synapses, we developed an intact, ex vivo preparation. We found robust physiological expression of Ih in 89% of cell bodies and 100% of calyx terminals. Ih was significantly larger in calyx terminals than in cell bodies; however, other biophysical characteristics were similar. Ih was absent in calyces lacking Hcn1 and Hcn2, but small Ih was still present in cell bodies, which suggests expression of an additional subunit, perhaps Hcn4. To determine the contributions of hair cell mechanotransduction and Ih to the firing patterns of calyx terminals, we recorded action potentials in current-clamp mode. Mechanotransduction currents were modulated by hair bundle defection and application of calcium chelators to disrupt tip links. Ih activity was modulated using ZD7288 and cAMP. We found that both hair cell transduction and Ih contribute to the rate and regularity of spontaneous action potentials in the vestibular afferent neurons. We propose that modulation of Ih in vestibular ganglion neurons may provide a mechanism for modulation of spontaneous activity in the vestibular periphery
The Design and Operation of The Keck Observatory Archive
The Infrared Processing and Analysis Center (IPAC) and the W. M. Keck
Observatory (WMKO) operate an archive for the Keck Observatory. At the end of
2013, KOA completed the ingestion of data from all eight active observatory
instruments. KOA will continue to ingest all newly obtained observations, at an
anticipated volume of 4 TB per year. The data are transmitted electronically
from WMKO to IPAC for storage and curation. Access to data is governed by a
data use policy, and approximately two-thirds of the data in the archive are
public.Comment: 12 pages, 4 figs, 4 tables. Presented at Software and
Cyberinfrastructure for Astronomy III, SPIE Astronomical Telescopes +
Instrumentation 2014. June 2014, Montreal, Canad
Distribution, growth, and mortality of sailfish (Istiophorus platypterus) larvae in the northern Gulf of Mexico
Ichthyoplankton surveys were conducted in shelf and slope
waters of the northern Gulf of Mexico during the months of May–September in 2005 and 2006 to investigate the potential role of this region as spawning and nursery habitat of sailfish (Istiophorus platypterus). During the two-year study, 2426 sailfish larvae were collected, ranging in size from 2.0 to 24.3 mm standard length. Mean density for all neuston net collections (n=288) combined was 1.5 sailfish per 1000 m2, and maximum density was observed within frontal features created by hydrodynamic convergence
(2.3 sailfish per 1000 m2). Sagittal otoliths were extracted from 1330 larvae, and otolith microstructure
analysis indicated that the sailfish ranged in age from 4 to 24 days after hatching (mean=10.5 d, standard deviation
[SD]=3.2 d). Instantaneous growth coefficients (g) among survey periods (n=5) ranged from 0.113 to 0.127, and growth peaked during July 2005 collections when density within frontal features was highest. Daily instantaneous mortality
rates (Z) ranged from 0.228 to 0.381, and Z was indexed to instantaneous weight-specific growth (G) to assess stage-specific production potential of larval cohorts. Ratios of G to Z were greater than 1.0 for all but one cohort examined, indicating that cohorts were gaining biomass during the majority of months investigated. Stage-specific production potential, in combination with catch rates and
densities of larvae, indicates that the Gulf of Mexico likely represents important spawning and nursery habitat for sailfish
TMC function, dysfunction, and restoration in mouse vestibular organs
Tmc1 and Tmc2 are essential pore-forming subunits of mechanosensory transduction channels localized to the tips of stereovilli in auditory and vestibular hair cells of the inner ear. To investigate expression and function of Tmc1 and Tmc2 in vestibular organs, we used quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization – hairpin chain reaction (FISH-HCR), immunostaining, FM1-43 uptake and we measured vestibular evoked potentials (VsEPs) and vestibular ocular reflexes (VORs). We found that Tmc1 and Tmc2 showed dynamic developmental changes, differences in regional expression patterns, and overall expression levels which differed between the utricle and saccule. These underlying changes contributed to unanticipated phenotypic loss of VsEPs and VORs in Tmc1 KO mice. In contrast, Tmc2 KO mice retained VsEPs despite the loss of the calcium buffering protein calretinin, a characteristic biomarker of mature striolar calyx-only afferents. Lastly, we found that neonatal Tmc1 gene replacement therapy is sufficient to restore VsEP in Tmc1 KO mice for up to six months post-injection
The very large G-protein coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles
Sensory hair bundles in the inner ear are composed of stereocilia that can be interconnected by a variety of different link types, including tip links, horizontal top connectors, shaft connectors, and ankle links. The ankle link antigen is an epitope specifically associated with ankle links and the calycal processes of photoreceptors in chicks. Mass spectrometry and immunoblotting were used to identify this antigen as the avian ortholog of the very large G-protein-coupled receptor VLGR1, the product of the Usher syndrome USH2C (Mass1) locus. Like ankle links, Vlgr1 is expressed transiently around the base of developing hair bundles in mice. Ankle links fail to form in the cochleae of mice carrying a targeted mutation in Vlgr1 (Vlgr1/del7TM), and the bundles become disorganized just after birth. FM1-43 [N-(3-triethylammonium)propyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] dye loading and whole-cell recordings indicate mechanotransduction is impaired in cochlear, but not vestibular, hair cells of early postnatal Vlgr1/del7TM mutant mice. Auditory brainstem recordings and distortion product measurements indicate that these mice are severely deaf by the third week of life. Hair cells from the basal half of the cochlea are lost in 2-month-old Vlgr1/del7TM mice, and retinal function is mildly abnormal in aged mutants. Our results indicate that Vlgr1 is required for formation of the ankle link complex and the normal development of cochlear hair bundles
Recommended from our members
A Gata3–Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing
Information flow through neural circuits is determined by the nature of the synapses linking the subtypes of neurons. How neurons acquire features distinct to each synapse remains unknown. We show that the transcription factor Mafb drives the formation of auditory ribbon synapses, which are specialized for rapid transmission from hair cells to spiral ganglion neurons (SGNs). Mafb acts in SGNs to drive differentiation of the large postsynaptic density (PSD) characteristic of the ribbon synapse. In Mafb mutant mice, SGNs fail to develop normal PSDs, leading to reduced synapse number and impaired auditory responses. Conversely, increased Mafb accelerates synaptogenesis. Moreover, Mafb is responsible for executing one branch of the SGN differentiation program orchestrated by the Gata3 transcriptional network. Remarkably, restoration of Mafb rescues the synapse defect in Gata3 mutants. Hence, Mafb is a powerful regulator of cell-type specific features of auditory synaptogenesis that offers a new entry point for treating hearing loss. DOI: http://dx.doi.org/10.7554/eLife.01341.00
Interleukin-17 Stimulates C-Reactive Protein Expression in Hepatocytes and Smooth Muscle Cells via p38 MAPK and ERK1/2-Dependent NF-κB and C/EBPβ Activation
Elevated systemic levels of the acute phase C-reactive protein (CRP) are predictors of future cardiovascular events. There is evidence that CRP may also play a direct role in atherogenesis. Here we determined whether the proinflammatory interleukin (IL)-17 stimulates CRP expression in hepatocytes (Hep3B cell line and primary hepatocytes) and coronary artery smooth muscle cells (CASMC). Our results demonstrate that IL-17 potently induces CRP expression in Hep3B cells independent of IL-1β and IL-6. IL-17 induced CRP promoter-driven reporter gene activity that could be attenuated by dominant negative IκBα or C/EBPβ knockdown and stimulated both NF-κB and C/EBP DNA binding and reporter gene activities. Targeting NF-κB and C/EBPβ activation by pharmacological inhibitors, small interfering RNA interference and adenoviral transduction of dominant negative expression vectors blocked IL-17-mediated CRP induction. Overexpression of wild type p50, p65, and C/EBPβ stimulated CRP transcription. IL-17 stimulated p38 MAPK and ERK1/2 activation, and SB203580 and PD98059 blunted IL-17-mediated NF-κB and C/EBP activation and CRP transcription. These results, confirmed in primary human hepatocytes and CASMC, demonstrate for the first time that IL-17 is a potent inducer of CRP expression via p38 MAPK and ERK1/2-dependent NF-κB and C/EBPβ activation and suggest that IL-17 may mediate chronic inflammation, atherosclerosis, and thrombosis
Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells
Inner ear sensory epithelia contain mechanosensitive hair cells that transmit information to the brain through innervation with bipolar neurons. Mammalian hair cells do not regenerate and are limited in number. Here we investigate the potential to generate mechanosensitive hair cells from mouse embryonic stem cells in a three-dimensional (3D) culture system. The system faithfully recapitulates mouse inner ear induction followed by self-guided development into organoids that morphologically resemble inner ear vestibular organs. We find that organoid hair cells acquire mechanosensitivity equivalent to functionally mature hair cells in postnatal mice. The organoid hair cells also progress through a similar dynamic developmental pattern of ion channel expression, reminiscent of two subtypes of native vestibular hair cells. We conclude that our 3D culture system can generate large numbers of fully functional sensory cells which could be used to investigate mechanisms of inner ear development and disease as well as regenerative mechanisms for inner ear repair
- …