5,935 research outputs found

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Microstructure of strongly sheared suspensions and its impact on rheology and diffusion

    Get PDF
    The effects of Brownian motion alone and in combination with an interparticle force of hard-sphere type upon the particle configuration in a strongly sheared suspension are analysed. In the limit Pe[rightward arrow][infty infinity] under the influence of hydrodynamic interactions alone, the pair-distribution function of a dilute suspension of spheres has symmetry properties that yield a Newtonian constitutive behaviour and a zero self-diffusivity. Here, Pe=[gamma][ogonek]a2/2D is the Péclet number with [gamma][ogonek] the shear rate, a the particle radius, and D the diffusivity of an isolated particle. Brownian diffusion at large Pe gives rise to an O(aPe[minus sign]1) thin boundary layer at contact in which the effects of Brownian diffusion and advection balance, and the pair-distribution function is asymmetric within the boundary layer with a contact value of O(Pe0.78) in pure-straining motion; non-Newtonian effects, which scale as the product of the contact value and the O(a3Pe[minus sign]1) layer volume, vanish as Pe[minus sign]0.22 as Pe[rightward arrow][infty infinity]

    Self-diffusion in sheared suspensions

    Get PDF
    Self-diffusion in a suspension of spherical particles in steady linear shear flow is investigated by following the time evolution of the correlation of number density fluctuations. Expressions are presented for the evaluation of the self-diffusivity in a suspension which is either raacroscopically quiescent or in linear flow at arbitrary Peclet number Pe = ẏa^2/2D, where ẏ is the shear rate, a is the particle radius, and D = k_BT/6πηa is the diffusion coefficient of an isolated particle. Here, k_B is Boltzmann's constant, T is the absolute temperature, and η is the viscosity of the suspending fluid. The short-time self-diffusion tensor is given by k_BT times the microstructural average of the hydrodynamic mobility of a particle, and depends on the volume fraction ø = 4/3πa^3n and Pe only when hydrodynamic interactions are considered. As a tagged particle moves through the suspension, it perturbs the average microstructure, and the long-time self-diffusion tensor, D_∞^s, is given by the sum of D_0^s and the correlation of the flux of a tagged particle with this perturbation. In a flowing suspension both D_0^s and D_∞^s are anisotropic, in general, with the anisotropy of D_0^s due solely to that of the steady microstructure. The influence of flow upon D_∞^s is more involved, having three parts: the first is due to the non-equilibrium microstructure, the second is due to the perturbation to the microstructure caused by the motion of a tagged particle, and the third is by providing a mechanism for diffusion that is absent in a quiescent suspension through correlation of hydrodynamic velocity fluctuations. The self-diffusivity in a simply sheared suspension of identical hard spheres is determined to O(φPe^(3/2)) for Pe « 1 and ø « 1, both with and without hydro-dynamic interactions between the particles. The leading dependence upon flow of D_0^s is 0.22DøPeÊ, where Ê is the rate-of-strain tensor made dimensionless with ẏ. Regardless of whether or not the particles interact hydrodynamically, flow influences D_∞^s at O(øPe) and O(øPe^(3/2)). In the absence of hydrodynamics, the leading correction is proportional to øPeDÊ. The correction of O(øPe^(3/2)), which results from a singular advection-diffusion problem, is proportional, in the absence of hydrodynamic interactions, to øPe^(3/2)DI; when hydrodynamics are included, the correction is given by two terms, one proportional to Ê, and the second a non-isotropic tensor. At high ø a scaling theory based on the approach of Brady (1994) is used to approximate D_∞^s. For weak flows the long-time self-diffusivity factors into the product of the long-time self-diffusivity in the absence of flow and a non-dimensional function of Pe = ẏa^2/2D^s_0(φ)$. At small Pe the dependence on Pe is the same as at low ø
    corecore