166 research outputs found
Physical Model of the Immune Response of Bacteria Against Bacteriophage Through the Adaptive CRISPR-Cas Immune System
Bacteria and archaea have evolved an adaptive, heritable immune system that
recognizes and protects against viruses or plasmids. This system, known as the
CRISPR-Cas system, allows the host to recognize and incorporate short foreign
DNA or RNA sequences, called `spacers' into its CRISPR system. Spacers in the
CRISPR system provide a record of the history of bacteria and phage
coevolution. We use a physical model to study the dynamics of this coevolution
as it evolves stochastically over time. We focus on the impact of mutation and
recombination on bacteria and phage evolution and evasion. We discuss the
effect of different spacer deletion mechanisms on the coevolutionary dynamics.
We make predictions about bacteria and phage population growth, spacer
diversity within the CRISPR locus, and spacer protection against the phage
population.Comment: 37 pages, 13 figure
Reduced mutation rate and increased transformability of transposon-free Acinetobacter baylyi ADP1-ISx
ABSTRACT
The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS
1236
from the genome of the naturally transformable bacterium
Acinetobacter baylyi
ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS
1236
insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS
1236
activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase (
dinP
) and a DNA damage response regulator (
umuD
Ab
[the
umuD
gene of
A. baylyi
]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications.
IMPORTANCE
Acinetobacter baylyi
ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves, inserting into other genes, and thereby inactivating them from the ADP1 genome. The resulting āclean-genomeā ADP1-ISx strain exhibited larger reductions in the rates of inactivating mutations than expected from spontaneous mutation rates measured via whole-genome sequencing of lineages evolved under relaxed selection. Surprisingly, we also found that IS element activity reduces transformability and is a major cause of cell aggregation and death in wild-type ADP1 grown under normal laboratory conditions. More generally, our results demonstrate that domesticating a bacterial genome by removing mobile DNA elements that have accumulated during evolution in the wild can have unanticipated benefits.
</jats:p
The distributions, mechanisms, and structures of metabolite-binding riboswitches
Phylogenetic analyses revealed insights into the distribution of riboswitch classes in different microbial groups, and structural analyses led to updated aptamer structure models and insights into the mechanism of these non-coding RNA structures
Achieving Specificity in Selected and Wild-Type N PeptideāRNA Complexes: The Importance of Discrimination against Noncognate RNA Targets
The boxB RNA pentaloops from the P22 and Ī» phages each adopt a GNRA tetraloop fold upon binding their cognate arginine-rich N peptides. The third loop base in P22 boxB (3-out) and the fourth in Ī» boxB (4-out) are excluded to accommodate this structure. Previously, we selected a pool of Ī» N sequences with random amino acids at loop contacting positions 13ā22 for binding to either of these two GNRA-folded pentaloops or a canonical GNRA tetraloop and isolated a class of peptides with a new conserved arginine (R15). Here, we characterize the binding of Ī» N and these R15 peptides using fluorescent titrations with 2-aminopurine labeled versions of the three GNRA-folded loops and circular dichroism spectrometry. All peptides preferentially bind the Ī» boxB RNA loop. Ī» N and R15 peptide specificity against the P22 loop arises from the cost of rearranging its loop into the 4-out GNRA structure. Modeling indicates that the interaction of R8 with an additional loop phosphate in the 4-out GNRA pentaloop selectively stabilizes this complex relative to the tetraloop. R15 peptides gain additional discrimination against the tetraloop because their arginine also preferentially interacts with the 4-out GNRA pentaloop phosphate backbone, whereas K14 and W18 of Ī» N contribute equal affinity when binding the tetraloop. Nonspecific electrostatic interactions by basic residues near the C-termini of these peptides create significantly steeper salt dependencies in association constants for noncognate loops, aiding discrimination at high salt concentrations. Our results emphasize the importance of considering specificity against noncognate as well as nonspecific targets in the combinatorial and rational design of biopolymers capable of macromolecular recognition
Achieving Specificity in Selected and Wild-Type N PeptideāRNA Complexes: The Importance of Discrimination against Noncognate RNA Targets
The boxB RNA pentaloops from the P22 and Ī» phages each adopt a GNRA tetraloop fold upon binding their cognate arginine-rich N peptides. The third loop base in P22 boxB (3-out) and the fourth in Ī» boxB (4-out) are excluded to accommodate this structure. Previously, we selected a pool of Ī» N sequences with random amino acids at loop contacting positions 13ā22 for binding to either of these two GNRA-folded pentaloops or a canonical GNRA tetraloop and isolated a class of peptides with a new conserved arginine (R15). Here, we characterize the binding of Ī» N and these R15 peptides using fluorescent titrations with 2-aminopurine labeled versions of the three GNRA-folded loops and circular dichroism spectrometry. All peptides preferentially bind the Ī» boxB RNA loop. Ī» N and R15 peptide specificity against the P22 loop arises from the cost of rearranging its loop into the 4-out GNRA structure. Modeling indicates that the interaction of R8 with an additional loop phosphate in the 4-out GNRA pentaloop selectively stabilizes this complex relative to the tetraloop. R15 peptides gain additional discrimination against the tetraloop because their arginine also preferentially interacts with the 4-out GNRA pentaloop phosphate backbone, whereas K14 and W18 of Ī» N contribute equal affinity when binding the tetraloop. Nonspecific electrostatic interactions by basic residues near the C-termini of these peptides create significantly steeper salt dependencies in association constants for noncognate loops, aiding discrimination at high salt concentrations. Our results emphasize the importance of considering specificity against noncognate as well as nonspecific targets in the combinatorial and rational design of biopolymers capable of macromolecular recognition
Mapping Wind Direction with HF Radar
The article of record as published may be found at https://www.jstor.org/stable/43924806Office of Naval ResearchH.C. Graber acknowledges the sup- port by the Office of Naval Research through grant N00014-94-1-1016 (DUCK94)
Identifying Structural Variation in Haploid Microbial Genomes from Short-Read Resequencing Data Using Breseq
Mutations that alter chromosomal structure play critical roles in evolution and disease, including in the origin of new lifestyles and pathogenic traits in microbes. Large-scale rearrangements in genomes are often mediated by recombination events involving new or existing copies of mobile genetic elements, recently duplicated genes, or other repetitive sequences. Most current software programs for predicting structural variation from short-read DNA resequencing data are intended primarily for use on human genomes. They typically disregard information in reads mapping to repeat sequences, and significant post-processing and manual examination of their output is often required to rule out false-positive predictions and precisely describe mutational events. Results: We have implemented an algorithm for identifying structural variation from DNA resequencing data as part of the breseq computational pipeline for predicting mutations in haploid microbial genomes. Our method evaluates the support for new sequence junctions present in a clonal sample from split-read alignments to a reference genome, including matches to repeat sequences. Then, it uses a statistical model of read coverage evenness to accept or reject these predictions. Finally, breseq combines predictions of new junctions and deleted chromosomal regions to output biologically relevant descriptions of mutations and their effects on genes. We demonstrate the performance of breseq on simulated Escherichia coli genomes with deletions generating unique breakpoint sequences, new insertions of mobile genetic elements, and deletions mediated by mobile elements. Then, we reanalyze data from an E. coli K-12 mutation accumulation evolution experiment in which structural variation was not previously identified. Transposon insertions and large-scale chromosomal changes detected by breseq account for similar to 25% of spontaneous mutations in this strain. In all cases, we find that breseq is able to reliably predict structural variation with modest read-depth coverage of the reference genome (>40-fold). Conclusions: Using breseq to predict structural variation should be useful for studies of microbial epidemiology, experimental evolution, synthetic biology, and genetics when a reference genome for a closely related strain is available. In these cases, breseq can discover mutations that may be responsible for important or unintended changes in genomes that might otherwise go undetected.U.S. National Institutes of Health R00-GM087550U.S. National Science Foundation (NSF) DEB-0515729NSF BEACON Center for the Study of Evolution in Action DBI-0939454Cancer Prevention & Research Institute of Texas (CPRIT) RP130124University of Texas at Austin startup fundsUniversity of Texas at AustinCPRIT Cancer Research TraineeshipMolecular Bioscience
Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria
AbstractRiboswitches are metabolite binding domains within certain messenger RNAs that serve as precision sensors for their corresponding targets. Allosteric rearrangement of mRNA structure is mediated by ligand binding, and this results in modulation of gene expression. We have identified a class of riboswitches that selectively recognizes guanine and becomes saturated at concentrations as low as 5 nM. In Bacillus subtilis, this mRNA motif is located on at least five separate transcriptional units that together encode 17 genes that are mostly involved in purine transport and purine nucleotide biosynthesis. Our findings provide further examples of mRNAs that sense metabolites and that control gene expression without the need for protein factors. Furthermore, it is now apparent that riboswitches contribute to the regulation of numerous fundamental metabolic pathways in certain bacteria
- ā¦