492 research outputs found
Convolutional Dictionary Learning: Acceleration and Convergence
Convolutional dictionary learning (CDL or sparsifying CDL) has many
applications in image processing and computer vision. There has been growing
interest in developing efficient algorithms for CDL, mostly relying on the
augmented Lagrangian (AL) method or the variant alternating direction method of
multipliers (ADMM). When their parameters are properly tuned, AL methods have
shown fast convergence in CDL. However, the parameter tuning process is not
trivial due to its data dependence and, in practice, the convergence of AL
methods depends on the AL parameters for nonconvex CDL problems. To moderate
these problems, this paper proposes a new practically feasible and convergent
Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The
BPG-M-based CDL is investigated with different block updating schemes and
majorization matrix designs, and further accelerated by incorporating some
momentum coefficient formulas and restarting techniques. All of the methods
investigated incorporate a boundary artifacts removal (or, more generally,
sampling) operator in the learning model. Numerical experiments show that,
without needing any parameter tuning process, the proposed BPG-M approach
converges more stably to desirable solutions of lower objective values than the
existing state-of-the-art ADMM algorithm and its memory-efficient variant do.
Compared to the ADMM approaches, the BPG-M method using a multi-block updating
scheme is particularly useful in single-threaded CDL algorithm handling large
datasets, due to its lower memory requirement and no polynomial computational
complexity. Image denoising experiments show that, for relatively strong
additive white Gaussian noise, the filters learned by BPG-M-based CDL
outperform those trained by the ADMM approach.Comment: 21 pages, 7 figures, submitted to IEEE Transactions on Image
Processin
- …