2 research outputs found

    In Vitro and In Vivo Characterization of Intrinsic Sympathomimetic Activity in Normal and Heart Failure Rats

    Get PDF
    ABSTRACT Clinical studies conducted with carvedilol suggest that ␤-adrenoceptor antagonism is an effective therapeutic approach to the treatment of heart failure. However, many ␤-adrenoceptor antagonists are weak partial agonists and possess significant intrinsic sympathomimetic activity (ISA), which may be problematic in the treatment of heart failure. In the present study, the ISAs of bucindolol, xamoterol, bisoprolol, and carvedilol were evaluated and compared in normal rats [Sprague-Dawley (SD)], in rats with confirmed heart failure [spontaneously hypertensive heart failure (SHHF)], and in isolated neonatal rat cardiomyocytes. At equieffective ␤ 1 -adrenolytic doses, the administration of xamoterol and bucindolol produced a prolonged, equieffective, and dose-related increase in heart rate in both pithed SD rats (ED 50 ϭ 5 and 40 g/kg, respectively) and SHHF rats (ED 50 ϭ 6 and 30 g/kg, respectively). The maximum effect of both compounds in SHHF rats was approximately 50% of that observed in SD rats. In contrast, carvedilol and bisoprolol had no significant effect on resting heart rate in the pithed SD or SHHF rat. The maximum increase in heart rate elicited by xamoterol and bucindolol was inhibited by treatment with propranolol, carvedilol, and betaxolol (␤ 1 -adrenoceptor antagonist) but not by ICI 118551 (␤ 2 -adrenoceptor antagonist) in neonatal rat. When the ␤-adrenoceptor-mediated cAMP response was examined in cardiomyocytes, an identical partial agonist/antagonist response profile was observed for all compounds, demonstrating a strong correlation with the in vivo results. In contrast, GTP-sensitive ligand binding and tissue adenylate cyclase activity were not sensitive methods for detecting ␤-adrenoceptor partial agonist activity in the heart. In summary, xamoterol and bucindolol, but not carvedilol and bisoprolol, exhibited direct ␤ 1 -adrenoceptor-mediated ISA in normal and heart failure rats
    corecore