18 research outputs found
Magnetism, chemical spots, and stratification in the HgMn star Ï Phoenicis
Context. Mercury-manganese (HgMn) stars have been considered as non-magnetic and non-variable chemically peculiar (CP) stars
for a long time. However, recent discoveries of the variability in spectral line profiles have suggested an inhomogeneous surface
distribution of chemical elements in some HgMn stars. From the studies of other CP stars it is known that magnetic field plays a key
role in the formation of surface spots. All attempts to find magnetic fields in HgMn stars have yielded negative results.
Aims. In this study, we investigate the possible presence of a magnetic field in Ï Phe (HD 11753) and reconstruct surface distribution
of chemical elements that show variability in spectral lines.We also test a hypothesis that a magnetic field is concentrated in chemical
spots and look into the possibility that some chemical elements are stratified with depth in the stellar atmosphere.
Methods. Our analysis is based on high-quality spectropolarimetric time-series observations, covering a full rotational period of
the star. Spectra were obtained with the HARPSpol at the ESO 3.6-m telescope. To increase the sensitivity of the magnetic field
search, we employed the least-squares deconvolution (LSD) technique. Using Doppler imaging code INVERS10, we reconstructed
surface chemical distributions by utilising information from multiple spectral lines. The vertical stratification of chemical elements
was calculated with the DDAFit program.
Results. Combining information from all suitable spectral lines, we set an upper limit of 4 G on the mean longitudinal magnetic field.
For chemical spots, an upper limit on the longitudinal field varies between 8 and 15 G. We confirmed the variability of Y, Sr, and Ti
and detected variability in Cr lines. Stratification analysis showed that Y and Ti are not concentrated in the uppermost atmospheric
layers.
Conclusions. Our spectropolarimetric observations rule out the presence of a strong, globally-organised magnetic field in Ï Phe.
This implies an alternative mechanism of spot formation, which could be related to a non-equilibrium atomic diffusion. However, the
typical time scales of the variation in stratification predicted by the recent time-dependent diffusion models exceed significantly the
spot evolution time-scale reported for Ï Phe
Magnetically Controlled Accretion on the Classical T Tauri Stars GQ Lupi and TQ Hydrae
We present high spectral resolution (R â 108,000) Stokes V polarimetry of the classical T Tauri stars (CTTSs)
GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m
telescope. We present data on both photospheric lines and emission lines, concentrating our discussion on the
polarization properties of the He i emission lines at 5876 Ă
and 6678 Ă
. The He i lines in these CTTSs contain both
narrow emission cores, believed to come from near the accretion shock region on these stars, and broad emission
components which may come from either a wind or the large-scale magnetospheric accretion flow.We detect strong
polarization in the narrow component of the two He i emission lines in both stars. We observe a maximum implied
field strength of 6.05 ± 0.24 kG in the 5876 Ă
line of GQ Lup, making it the star with the highest field strength
measured in this line for a CTTS. We find field strengths in the two He i lines that are consistent with each other,
in contrast to what has been reported in the literature on at least one star. We do not detect any polarization in the
broad component of the He i lines on these stars, strengthening the conclusion that they form over a substantially
different volume relative to the formation region of the narrow component of the He i lines
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
Recommended from our members