18 research outputs found

    Invited review: Lying time and the welfare of dairy cows

    Get PDF
    Adequate time lying down is often considered an important aspect of dairy cow welfare. We examine what is known about cows’ motivation to lie down and the consequences for health and other indicators of biological function when this behavior is thwarted. We review the environmental and animal-based factors that affect lying time in the context of animal welfare. Cows can be highly motivated to lie down. They show rebound lying behavior after periods of forced standing and will sacrifice other activities, such as feeding, to lie down for an adequate amount of time. They will work, by pushing levers or weighted gates, to lie down and show possible indicators of frustration when lying behavior is thwarted. Some evidence suggests that risk of lameness is increased in environments that provide unfavorable conditions for cows to lie down and cows are forced to stand. Lameness itself can result in longer lying times, whereas mastitis reduces it. Cow-based factors such as reproductive status, age, and milk production influence lying time, but the welfare implications of these differences are unknown. Lower lying times are reported in pasture-based systems, dry lots, and bedded packs (9 h/d) compared with tiestalls and freestalls (10 to 12 h/d) in cross-farm research. Unfavorable conditions, including too few lying stalls for the number of cows, hard or wet lying surfaces, inadequate bedding, stalls that are too small or poorly designed, heat, and rain all reduce lying time. Time constraints, such as feeding or milking, can influence lying time. However, more information is needed about the implications of mediating factors such as the effect of the standing surface (concrete, pasture, or other surfaces) and cow behavior while standing (e.g., being restrained, walking, grazing) to understand the effect of low lying times on animal welfare. Many factors contribute to the difficulty of finding a valid threshold for daily lying time to use in the assessment of animal welfare. Although higher lying times often correspond with cow comfort, and lower lying times are seen in unfavorable conditions, exceptions occur, namely when cows lie down for longer because of disease or when they spend more time standing because of estrus or parturition, or to engage in other behaviors. In conclusion, lying behavior is important to dairy cattle, but caution and a full understanding of the context and the character of the animals in question is needed before drawing firm conclusions about animal welfare from measures of lying time.Peer reviewe

    Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle

    Get PDF
    The aims were to determine whether measures of acceleration of the legs and back of dairy cows while they walk could help detect changes in gait or locomotion associated with lameness and differences in the walking surface. In 2 experiments, 12 or 24 multiparous dairy cows were fitted with five 3-dimensional accelerometers, 1 attached to each leg and 1 to the back, and acceleration data were collected while cows walked in a straight line on concrete (experiment 1) or on both concrete and rubber (experiment 2). Cows were video-recorded while walking to assess overall gait, asymmetry of the steps, and walking speed. In experiment 1, cows were selected to maximize the range of gait scores, whereas no clinically lame cows were enrolled in experiment 2. For each accelerometer location, overall acceleration was calculated as the magnitude of the 3-dimensional acceleration vector and the variance of overall acceleration, as well as the asymmetry of variance of acceleration within the front and rear pair of legs. In experiment 1, the asymmetry of variance of acceleration in the front and rear legs was positively correlated with overall gait and the visually assessed asymmetry of the steps (r ≥0.6). Walking speed was negatively correlated with the asymmetry of variance of the rear legs (r=−0.8) and positively correlated with the acceleration and the variance of acceleration of each leg and back (r ≥0.7). In experiment 2, cows had lower gait scores [2.3 vs. 2.6; standard error of the difference (SED)=0.1, measured on a 5-point scale] and lower scores for asymmetry of the steps (18.0 vs. 23.1; SED=2.2, measured on a continuous 100-unit scale) when they walked on rubber compared with concrete, and their walking speed increased (1.28 vs. 1.22m/s; SED=0.02). The acceleration of the front (1.67 vs. 1.72g; SED=0.02) and rear (1.62 vs. 1.67g; SED=0.02) legs and the variance of acceleration of the rear legs (0.88 vs. 0.94g; SED=0.03) were lower when cows walked on rubber compared with concrete. Despite the improvements in gait score that occurred when cows walked on rubber, the asymmetry of variance of acceleration of the front leg was higher (15.2 vs. 10.4%; SED=2.0). The difference in walking speed between concrete and rubber correlated with the difference in the mean acceleration and the difference in the variance of acceleration of the legs and back (r ≥0.6). Three-dimensional accelerometers seem to be a promising tool for lameness detection on farm and to study walking surfaces, especially when attached to a leg.The aims were to determine whether measures of acceleration of the legs and back of dairy cows while they walk could help detect changes in gait or locomotion associated with lameness and differences in the walking surface. In 2 experiments, 12 or 24 multiparous dairy cows were fitted with five 3-dimensional accelerometers, 1 attached to each leg and 1 to the back, and acceleration data were collected while cows walked in a straight line on concrete (experiment 1) or on both concrete and rubber (experiment 2). Cows were video-recorded while walking to assess overall gait, asymmetry of the steps, and walking speed. In experiment 1, cows were selected to maximize the range of gait scores, whereas no clinically lame cows were enrolled in experiment 2. For each accelerometer location, overall acceleration was calculated as the magnitude of the 3-dimensional acceleration vector and the variance of overall acceleration, as well as the asymmetry of variance of acceleration within the front and rear pair of legs. In experiment 1, the asymmetry of variance of acceleration in the front and rear legs was positively correlated with overall gait and the visually assessed asymmetry of the steps (r ≥0.6). Walking speed was negatively correlated with the asymmetry of variance of the rear legs (r=−0.8) and positively correlated with the acceleration and the variance of acceleration of each leg and back (r ≥0.7). In experiment 2, cows had lower gait scores [2.3 vs. 2.6; standard error of the difference (SED)=0.1, measured on a 5-point scale] and lower scores for asymmetry of the steps (18.0 vs. 23.1; SED=2.2, measured on a continuous 100-unit scale) when they walked on rubber compared with concrete, and their walking speed increased (1.28 vs. 1.22m/s; SED=0.02). The acceleration of the front (1.67 vs. 1.72g; SED=0.02) and rear (1.62 vs. 1.67g; SED=0.02) legs and the variance of acceleration of the rear legs (0.88 vs. 0.94g; SED=0.03) were lower when cows walked on rubber compared with concrete. Despite the improvements in gait score that occurred when cows walked on rubber, the asymmetry of variance of acceleration of the front leg was higher (15.2 vs. 10.4%; SED=2.0). The difference in walking speed between concrete and rubber correlated with the difference in the mean acceleration and the difference in the variance of acceleration of the legs and back (r ≥0.6). Three-dimensional accelerometers seem to be a promising tool for lameness detection on farm and to study walking surfaces, especially when attached to a leg.Peer reviewe

    Recumbence Behavior in Zoo Elephants: Determination of Patterns and Frequency of Recumbent Rest and Associated Environmental and Social Factors

    Get PDF
    Resting behaviors are an essential component of animal welfare but have received little attention in zoological research. African savanna elephant (Loxodonta africana) and Asian elephant (Elephas maximus) rest includes recumbent postures, but no large-scale investigation of African and Asian zoo elephant recumbence has been previously conducted. We used anklets equipped with accelerometers to measure recumbence in 72 adult female African (n = 44) and Asian (n = 28)elephants housed in 40 North American zoos. We collected 344 days of data and determined associations between recumbence and social, housing, management, and demographic factors. African elephants were recumbent less (2.1 hours/day, S.D. = 1.1) than Asian elephants (3.2 hours/day, S.D. = 1.5; P \u3c 0.001). Nearly one-third of elephants were non-recumbent on at least one night, suggesting this is a common behavior. Multi-variable regression models for each species showed that substrate, space, and social variables had the strongest associations with recumbence. In the African model, elephants who spent any amount of time housed on all-hard substrate were recumbent 0.6 hours less per day than those who were never on all-hard substrate, and elephants who experienced an additional acre of outdoor space at night increased their recumbence by 0.48 hours per day. In the Asian model, elephants who spent any amount of time housed on all-soft substrate were recumbent 1.1 hours more per day more than those who were never on all-soft substrate, and elephants who spent any amount of time housed alone were recumbent 0.77 hours more per day than elephants who were never housed alone. Our results draw attention to the significant interspecific difference in the amount of recumbent rest and in the factors affecting recumbence; however, in both species, the influence of flooring substrate is notably important to recumbent rest, and by extension, zoo elephant welfare
    corecore