10 research outputs found
Data shopping in an open marketplace: introducing the Ontogrator web application for marking up data using ontologies and browsing using facets
In the future, we hope to see an open and thriving data market in which users can find and select data from a wide range of data providers. In such an open access market, data are products that must be packaged accordingly. Increasingly, eCommerce sellers present heterogeneous product lines to buyers using faceted browsing. Using this approach we have developed the Ontogrator platform, which allows for rapid retrieval of data in a way that would be familiar to any online shopper. Using Knowledge Organization Systems (KOS), especially ontologies, Ontogrator uses text mining to mark up data and faceted browsing to help users navigate, query and retrieve data. Ontogrator offers the potential to impact scientific research in two major ways: 1) by significantly improving the retrieval of relevant information; and 2) by significantly reducing the time required to compose standard database queries and assemble information for further research. Here we present a pilot implementation developed in collaboration with the Genomic Standards Consortium (GSC) that includes content from the StrainInfo, GOLD, CAMERA, Silva and Pubmed databases. This implementation demonstrates the power of ontogration and highlights that the usefulness of this approach is fully dependent on both the quality of data and the KOS (ontologies) used. Ideally, the use and further expansion of this collaborative system will help to surface issues associated with the underlying quality of annotation and could lead to a systematic means for accessing integrated data resources
8th European Conference on Rare Diseases & Orphan Products (ECRD 2016)
MEETING ABSTRACTS: Open Access 8th European Conference on Rare
Diseases & Orphan Products (ECRD 2016), Edinburgh, UK. 26-28 May 201
Representing Normal and Abnormal Physiology as Routes of Flow in ApiNATOMY.
We present (i) the ApiNATOMY workflow to build knowledge models of biological connectivity, as well as (ii) the ApiNATOMY TOO map, a topological scaffold to organize and visually inspect these connectivity models in the context of a canonical architecture of body compartments. In this work, we outline the implementation of ApiNATOMY's knowledge representation in the context of a large-scale effort, SPARC, to map the autonomic nervous system. Within SPARC, the ApiNATOMY modeling effort has generated the SCKAN knowledge graph that combines connectivity models and TOO map. This knowledge graph models flow routes for a number of normal and disease scenarios in physiology. Calculations over SCKAN to infer routes are being leveraged to classify, navigate and search for semantically-linked metadata of multimodal experimental datasets for a number of cross-scale, cross-disciplinary projects
Promoting FAIR Data Through Community-driven Agile Design: the Open Data Commons for Spinal Cord Injury (odc-sci.org).
The past decade has seen accelerating movement from data protectionism in publishing toward open data sharing to improve reproducibility and translation of biomedical research. Developing data sharing infrastructures to meet these new demands remains a challenge. One model for data sharing involves simply attaching data, irrespective of its type, to publisher websites or general use repositories. However, some argue this creates a 'data dump' that does not promote the goals of making data Findable, Accessible, Interoperable and Reusable (FAIR). Specialized data sharing communities offer an alternative model where data are curated by domain experts to make it both open and FAIR. We report on our experiences developing one such data-sharing ecosystem focusing on 'long-tail' preclinical data, the Open Data Commons for Spinal Cord Injury (odc-sci.org). ODC-SCI was developed with community-based agile design requirements directly pulled from a series of workshops with multiple stakeholders (researchers, consumers, non-profit funders, governmental agencies, journals, and industry members). ODC-SCI focuses on heterogeneous tabular data collected by preclinical researchers including bio-behaviour, histopathology findings and molecular endpoints. This has led to an example of a specialized neurocommons that is well-embraced by the community it aims to serve. In the present paper, we provide a review of the community-based design template and describe the adoption by the community including a high-level review of current data assets, publicly released datasets, and web analytics. Although odc-sci.org is in its late beta stage of development, it represents a successful example of a specialized data commons that may serve as a model for other fields
Recommended from our members
FAIR SCI Ahead: The Evolution of the Open Data Commons for Pre-Clinical Spinal Cord Injury Research
Over the last 5 years, multiple stakeholders in the field of spinal cord injury (SCI) research have initiated efforts to promote publications standards and enable sharing of experimental data. In 2016, the National Institutes of Health/National Institute of Neurological Disorders and Stroke hosted representatives from the SCI community to streamline these efforts and discuss the future of data sharing in the field according to the FAIR (Findable, Accessible, Interoperable and Reusable) data stewardship principles. As a next step, a multi-stakeholder group hosted a 2017 symposium in Washington, DC entitled "FAIR SCI Ahead: the Evolution of the Open Data Commons for Spinal Cord Injury research." The goal of this meeting was to receive feedback from the community regarding infrastructure, policies, and organization of a community-governed Open Data Commons (ODC) for pre-clinical SCI research. Here, we summarize the policy outcomes of this meeting and report on progress implementing these policies in the form of a digital ecosystem: the Open Data Commons for Spinal Cord Injury (ODC-SCI.org). ODC-SCI enables data management, harmonization, and controlled sharing of data in a manner consistent with the well-established norms of scholarly publication. Specifically, ODC-SCI is organized around virtual "laboratories" with the ability to share data within each of three distinct data-sharing spaces: within the laboratory, across verified laboratories, or publicly under a creative commons license (CC-BY 4.0) with a digital object identifier that enables data citation. The ODC-SCI implements FAIR data sharing and enables pooled data-driven discovery while crediting the generators of valuable SCI data