1,207 research outputs found

    Hubble Space Telescope Weak-lensing Study of the Galaxy Cluster XMMU J2235.3-2557 at z=1.4: A Surprisingly Massive Galaxy Cluster when the Universe is One-third of its Current Age

    Full text link
    We present a weak-lensing analysis of the z=1.4 galaxy cluster XMMU J2235.3-2557, based on deep Advanced Camera for Surveys images. Despite the observational challenge set by the high redshift of the lens, we detect a substantial lensing signal at the >~ 8 sigma level. This clear detection is enabled in part by the high mass of the cluster, which is verified by our both parametric and non-parametric estimation of the cluster mass. Assuming that the cluster follows a Navarro-Frenk-White mass profile, we estimate that the projected mass of the cluster within r=1 Mpc is (8.5+-1.7) x 10^14 solar mass, where the error bar includes the statistical uncertainty of the shear profile, the effect of possible interloping background structures, the scatter in concentration parameter, and the error in our estimation of the mean redshift of the background galaxies. The high X-ray temperature 8.6_{-1.2}^{+1.3} keV of the cluster recently measured with Chandra is consistent with this high lensing mass. When we adopt the 1-sigma lower limit as a mass threshold and use the cosmological parameters favored by the Wilkinson Microwave Anisotropy Probe 5-year (WMAP5) result, the expected number of similarly massive clusters at z >~ 1.4 in the 11 square degree survey is N ~ 0.005. Therefore, the discovery of the cluster within the survey volume is a rare event with a probability < 1%, and may open new scenarios in our current understanding of cluster formation within the standard cosmological model.Comment: Accepted to ApJ for publication. 40 pages and 14 figure

    Gravitational potential of a homogeneous circular torus: new approach

    Full text link
    The integral expression for gravitational potential of a homogeneous circular torus composed of infinitely thin rings is obtained. Approximate expressions for torus potential in the outer and inner regions are found. In the outer region a torus potential is shown to be approximately equal to that of an infinitely thin ring of the same mass; it is valid up to the surface of the torus. It is shown in a first approximation, that the inner potential of the torus (inside a torus body) is a quadratic function of coordinates. The method of sewing together the inner and outer potentials is proposed. This method provided a continuous approximate solution for the potential and its derivatives, working throughout the region.Comment: 10 pages, 9 figures, 1 table; some misprints in formulae were correcte

    The Hubble Constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae

    Full text link
    Context. The precise determination of the present-day expansion rate of the Universe, expressed through the Hubble constant H0H_0, is one of the most pressing challenges in modern cosmology. Assuming flat Λ\LambdaCDM, H0H_0 inference at high redshift using cosmic-microwave-background data from Planck disagrees at the 4.4σ\sigma level with measurements based on the local distance ladder made up of parallaxes, Cepheids and Type Ia supernovae (SNe Ia), often referred to as "Hubble tension". Independent, cosmological-model-insensitive ways to infer H0H_0 are of critical importance. Aims. We apply an inverse-distance-ladder approach, combining strong-lensing time-delay-distance measurements with SN Ia data. By themselves, SNe Ia are merely good relative distance indicators, but by anchoring them to strong gravitational lenses one can obtain an H0H_0 measurement that is relatively insensitive to other cosmological parameters. Methods. A cosmological parameter estimate is performed for different cosmological background models, both for strong-lensing data alone and for the combined lensing + SNe Ia data sets. Results. The cosmological-model dependence of strong-lensing H0H_0 measurements is significantly mitigated through the inverse distance ladder. In combination with SN Ia data, the inferred H0H_0 consistently lies around 73-74 km s1^{-1} Mpc1^{-1}, regardless of the assumed cosmological background model. Our results agree nicely with those from the local distance ladder, but there is a >2σ\sigma tension with Planck results, and a ~1.5σ\sigma discrepancy with results from an inverse distance ladder including Planck, Baryon Acoustic Oscillations and SNe Ia. Future strong-lensing distance measurements will reduce the uncertainties in H0H_0 from our inverse distance ladder.Comment: 5 pages, 3 figures, A&A letters accepted versio

    Galaxy-Mass Correlations on 10 Mpc Scales in the Deep Lens Survey

    Full text link
    We examine the projected correlation of galaxies with mass from small scales (<few hundred kpc) where individual dark matter halos dominate, out to 15 Mpc where correlated large-scale structure dominates. We investigate these profiles as a function of galaxy luminosity and redshift. Selecting 0.8 million galaxies in the Deep Lens Survey, we use photometric redshifts and stacked weak gravitational lensing shear tomography out to radial scales of 1 degree from the centers of foreground galaxies. We detect correlated mass density from multiple halos and large-scale structure at radii larger than the virial radius, and find the first observational evidence for growth in the galaxy-mass correlation on 10 Mpc scales with decreasing redshift and fixed range of luminosity. For a fixed range of redshift, we find a scaling of projected halo mass with rest-frame luminosity similar to previous studies at lower redshift. We control systematic errors in shape measurement and photometric redshift, enforce volume completeness through absolute magnitude cuts, and explore residual sample selection effects via simulations.Comment: 13 pages, 9 figures, re-submitted to ApJ after addressing referee comment

    Expression of CPI-17 in smooth muscle during embryonic development and in neointimal lesion formation.

    Get PDF
    Ca(2+) sensitivity of smooth muscle (SM) contraction is determined by CPI-17, an inhibitor protein for myosin light chain phosphatase (MLCP). CPI-17 is highly expressed in mature SM cells, but the expression level varies under pathological conditions. Here, we determined the expression of CPI-17 in embryonic SM tissues and arterial neointimal lesions using immunohistochemistry. As seen in adult animals, the predominant expression of CPI-17 was detected at SM tissues on mouse embryonic sections, whereas MLCP was ubiquitously expressed. Compared with SM alpha-actin, CPI-17 expression doubled in arterial SM from embryonic day E10 to E14. Like SM alpha-actin and other SM marker proteins, CPI-17 was expressed in embryonic heart, and the expression was down-regulated at E17. In adult rat, CPI-17 expression level was reduced to 30% in the neointima of injured rat aorta, compared with the SM layers, whereas the expression of MLCP was unchanged in both regions. Unlike other SM proteins, CPI-17 was detected at non-SM organs in the mouse embryo, such as embryonic neurons and epithelium. Thus, CPI-17 expression is reversibly controlled in response to the phenotype transition of SM cells that restricts the signal to differentiated SM cells and particular cell types

    Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration

    Full text link
    The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness variation and the resulting PSF discontinuities across the CCD boundaries significant challenges in our removal of the systematics. We resolve this complication by performing PCA CCD-by-CCD, and interpolating the basis functions using conventional polynomials. We demonstrate that this PSF correction scheme reduces the residual PSF ellipticity correlation below 10^-7 over the cosmologically interesting scale. From a null test using HST/UDF galaxy images without input shear, we verify that the amplitude of the galaxy ellipticity correlation function, after the PSF correction, is consistent with the shot noise set by the finite number of objects. Therefore, we conclude that the current optical design and specification for the accuracy in the focal plane assembly are sufficient to enable the control of the PSF systematics required for weak-lensing science with the LSST.Comment: Accepted to PASP. High-resolution version is available at http://dls.physics.ucdavis.edu/~mkjee/LSST_weak_lensing_simulation.pd

    Nutritional paradigm of vermicompost enhances tolerance to endosulfan in Cicer arietinum

    Get PDF
    A nutritional factor in vermicompost has been exploited suitably to stimulate growth of chickpea Cicer  arietinum. It was noticed that incorporating 12.5% of vermicompost stimulates the plant in every aspect of  growth and development. Germination rate decreased during 10 to 15 days of treatment. However, it becomes identical to the control after 20 days of treatment. The percentage of increase in total length, internode size,  emergence of leaf, emergence of flower and number of pod was 13% (40 days treatment), 205% (15 days  treatment), 43% (28 days treatment), 58% (65 days treatment) and 600% (80 days treatment),  respectively. Similar impact of vermicompost was also noticed during growth of the plant in 2.5, 5 and 7.5%  of endosulfan. An increase in germination to the extent of 6-fold was also noticed. Total length, internode size, emergence of leaf, emergence of flower and number of pod has been triple (5 days treatment in 15%  endosulfan), more than 450% (5 days treatment in 5% endosulfan), more than 550% (23 days of growth in  10% endosulfan), 300% (65 days growth in 10% endosulfan) and 600% (85 days growth in 5% endosulfan).  Hence, the results obtained partially support stimulation effect of vermicompost in chickpea plant growth. This can be attributed to, as one of the principles, adopted by Cicer arietinum in remediation of endosulfanKey words: Vermicompost, endosulfan, growth parameters, chickpea

    Synaptic Pattern of KA1 and KA2 upon the Direction-Selective Ganglion Cells in Developing and Adult Mouse Retina

    Get PDF
    The detection of image motion is important to vision. Direction-selective retinal ganglion cells (DS-RGCs) respond strongly to stimuli moving in one direction of motion and are strongly inhibited by stimuli moving in the opposite direction. In this article, we investigated the distributions of kainate glutamate receptor subtypes KA1 and KA2 on the dendritic arbors of DS-RGCs in developing (5, 10) days postnatal (PN) and adult mouse retina to search for anisotropies. The distribution of kainate receptor subtypes on the DS-RGCs was determined using antibody immunocytochemistry. To identify their characteristic morphology, DS-RGCs were injected with Lucifer yellow. The triple-labeled images of dendrites, kinesin II, and receptors were visualized by confocal microscopy and were reconstructed from high-resolution confocal images. We found no evidence of asymmetry in any of the kainate receptor subunits examined on the dendritic arbors of both the On and Off layers of DS-RGCs in all periods of developing and adult stage that would predict direction selectivity

    Harold M. Frost T J Musculoskel Neuron Interact 2001; 2(2):117-119 William F. Neuman Awardee 2001

    Get PDF
    Tribute to Harold M. Frost, honorary president of ISMNI, who received the William F. Neuman Award from the American Society of Bone and Mineral Research October 2001

    TOPEX/POSEIDON operational orbit determination results using global positioning satellites

    Get PDF
    Results of operational orbit determination, performed as part of the TOPEX/POSEIDON (T/P) Global Positioning System (GPS) demonstration experiment, are presented in this article. Elements of this experiment include the GPS satellite constellation, the GPS demonstration receiver on board T/P, six ground GPS receivers, the GPS Data Handling Facility, and the GPS Data Processing Facility (GDPF). Carrier phase and P-code pseudorange measurements from up to 24 GPS satellites to the seven GPS receivers are processed simultaneously with the GDPF software MIRAGE to produce orbit solutions of T/P and the GPS satellites. Daily solutions yield subdecimeter radial accuracies compared to other GPS, LASER, and DORIS precision orbit solutions
    corecore